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a b s t r a c t

In this paper we augment the wave-averaged mean field equations commonly used to describe wave set-
up and wave-induced mean currents in the near-shore zone, with an empirical sediment flux law
depending only on the wave-induced mean current and mean total depth. This model allows the bottom
to evolve slowly in time, and is used to examine how sediment transport affects the beach profile and
wave set-up in the surf zone. We show that the mean bottom depth in the surf zone evolves according
to a simple wave equation, whose solution predicts that the mean bottom depth decreases and the beach
is replenished. Further, we show that if the sediment flux law also allows for a diffusive dependence on
the beach slope then the simple wave equation is replaced by a nonlinear diffusion equation which allows
a steady-state solution, the equilibrium beach profile.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The action of shoaling waves, and wave breaking in the surf
zone, in generating a wave-generated mean sea-level is well-
known and has been extensively studied, see for instance the
monographs by Mei (1983) and Svendsen (2006). The simplest
model is obtained by averaging the oscillatory wave field over
the wave phase to obtain a set of equations describing the
evolution of the mean fields in the shoaling zone based on small-
amplitude wave theory and then combining these with averaged
mass and momentum equations in the surf zone, where an
empirical formula is used for the breaking waves. These lead to a
prediction of a steady set-down in the shoaling zone, and a
set-up in the surf zone. This agrees quite well with experiments
and observations, see Bowen et al. (1968) for instance. However,
these models assume that the sea bottom is rigid, and ignore the
possible effects of sand transport by the wave velocity field, and
the wave-generated mean currents. Our purpose in this paper is
to add an empirical model of sediment transport to the wave-
averaged mean field equations and hence determine the effect of
this extra term on the beach profile and the wave set-up.

There is a vast literature on sediment transport due to waves,
see the recent works by Caballeria et al. (2002); Calvete et al.
(2001, 2002); Garnier et al. (2006, 2008); Hancock et al. (2008);
Lane and Restrepo (2007); McCall et al. (2010); Plant et al.
(2001); Restrepo (2001); Restropo and Bona (1995); Roelvink
et al. (2009); Ruessink et al. (2012) and Walgreen et al. (2002)

and the references therein, to name just a few representative
works. There are several methods to model the movement of bot-
tom sediment by the combined action of waves and currents, and
these can often be quite complicated, depending inter alia on the
nature of the sediment, and whether the sediment is confined to
the bottom boundary layer, or is suspended throughout a larger
portion of the water column. Various models have been used to
describe the formation of sand bars, ripples and sand waves,
where it has usually been assumed that the wave field is quasi-
periodic and non-breaking, see for instance the afore-mentioned
articles and the review article by Blondeaux (2001). For the most
part, application of these models to the near shore zone, where
there is wave breaking, has been confined to numerical simula-
tions. In particular, the effect of sediment transport on the beach
profile and the wave set-up, especially in the surf zone, does not
appear to have been examined in analytical detail, which is con-
trast to the case when there is no sediment transport where a
well-established analytical theory exists, see Mei (1983) or
Svendsen (2006) for instance. To remedy this, we modify the
well-known wave-averaged mean field equations by a bottom
boundary condition that allows for the evolution of the bottom
as sediment is moved. This leads to a single extra equation in
the wave-averaged mean field model to represent the time evolu-
tion of the bottom, based on a relatively simple empirical law for
the bottom sediment flux, based on the sediment transport mod-
els used in similar problems in the cited references above.
Although our model is two-dimensional in principle, in this study
we restrict ourselves to a one-dimensional implementation, with
a main focus on how sediment transport affects wave set-up and
the bottom beach profile.
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In Section 2 we present the usual wave-averaged mean field
equations that are commonly used in the literature, supplemented
here by a bottom sediment transport term. We then examine the
consequences for the beach profile and the wave set-up in
Section 3. We conclude with a discussion in Section 4.

2. Formulation

2.1. Wave field

In this section we recall the wave-averaged mean flow and
wave action equations that are commonly used to describe the
near-shore circulation, see Mei (1983) or Svendsen (2006) for in-
stance. We assume that the depth and the mean flow are slowly-
varying compared to the waves. Then we define a wave-phase
averaging operator hf i ¼ �f , so that all quantities can be expressed
as a mean field and a wave perturbation, denoted by a � overbar.
For instance,
f ¼ �fþ ~f: ð1Þ

where f is the free surface elevation above the bottom located at
z ¼ �hðx; tÞ. Then outside the surf zone, the representation for
slowly-varying, small-amplitude waves is, in standard notation,

~fðx; tÞ ¼ a cos hþ Oða2Þ: ð2Þ

Here a ¼ aðx; tÞ is the wave amplitude in the linearized theory, and
we shall consistently neglect the higher-order term Oða2Þ. h ¼ hðx; tÞ
is the phase, such that the wavenumber k, frequency X are given by

k ¼ ðk; lÞ ¼ rh; X ¼ �ht ; ð3Þ

where r ¼ ð@x; @yÞ. The local linear dispersion relation is

X ¼ xþ k � U; x2 ¼ gj tanh jH ð4Þ

where j2 ¼ k2 þ l2:

Here Uðx; tÞ is the slowly-varying depth-averaged mean current
(see below), and Hðx; tÞ ¼ �hðx; tÞ þ �fðx; tÞ is the total fluid depth, also
a slowly varying function of x; t. Note that hðx; tÞ is a dynamic quan-
tity, whose evolution is described in Section 2.3 below.

The basic equations governing the wave field are then the kine-
matic equation for conservation of waves

kt þrx ¼ 0; ð5Þ

which is obtained from (3) by cross-differentiation, the local disper-
sion relation (4), and the wave action equation for the wave
amplitude

At þr � ðcgAÞ ¼ 0: ð6Þ

In this linearized theory, A ¼ E=x, where E ¼ ga2=2 is the wave en-
ergy per unit mass, and cg ¼ rk �x ¼ Uþ cgk=j; ðcg ¼ dx=djÞ is
the group velocity.

2.2. Mean fields

The equations governing the mean fields are obtained by aver-
aging the depth-integrated Euler equations over the wave phase.
Thus the averaged equation for conservation of mass is

Ht þr � ðHUÞ ¼ 0: ð7Þ

For the velocity field we proceed in a slightly different way, that is
we set

u ¼ Uþ u0; ð8Þ

where U is defined so that the mean momentum density is given by

M ¼ HU ¼
Z f

�h
udz

� �
; ð9Þ

But now we need to note that u0 does not necessarily have zero
mean, and that U and �u are not necessarily the same. Indeed, from
(8) and (9) we get that

�u ¼ Uþ hu0i; and
Z f

�h
u0 dz

� �
¼ 0:

However, u0 ¼ ~uþ Oða2Þ, so that hu0i is Oða2Þ and it follows that, cor-
rect to second order in wave amplitude,

M ¼ H�uþMw; where Mw ¼ �Hhu0i ¼ hf~uðx;0; tÞi ¼ E
x

k:

ð10Þ

The term Mw in (10) is called the wave momentum, and can be ex-
pressed as Mw ¼ HUs where Us is the Stokes drift velocity. It follows
that U is a Lagrangian mean flow.

Averaging the depth-integrated horizontal momentum equa-
tion yields, see (Mei, 1983),

ðHUÞt þr � ðHUUÞ ¼ �r �
Z f

�h
u0u0 þ pI dz

� �
þ pðz ¼ �hÞh irh:

An estimate of the bottom pressure term is made by averaging the
vertical momentum equation to get

hpðz ¼ �hÞi � gð�fþ hÞ ¼ r �
Z f

�h
wudz

� �
þ

Z f

�h
wdz

� �
t
: ð11Þ

For slowly-varying small-amplitude waves, the integral terms on
the right-hand side may be neglected, and so hpðz ¼ �hÞi �
gð�fþ hÞ. Using this in the averaged horizontal momentum
equation, and replacing the pressure p with the dynamic pressure
q ¼ pþ ðz� �fÞ yields

ðHUÞt þr � ðHUUÞ ¼ �r � S� gHr�f ð12Þ

where S ¼
Z f

�h
½uuþ qI�dz

� �
� g

2
~f2

D E
I: ð13Þ

Here S is the radiation stress tensor. In the absence of any basic
background current, so that U is Oða2Þ, we may use the linearized
theory (2) to find that

S � cgk
E
x
þ E

cg

c
� 1

2

� �
I: ð14Þ

where the phase speed c ¼ x=j, correct to second order in the wave
amplitude.

In summary, to this stage the wave field is described by Eqs. (5,
6) for k; E, while the mean field equations to be solved for the mean
variables U;�f;H are the averaged equation for conservation of mass
(7) and the averaged equation for conservation of horizontal
momentum (12), where the radiation stress tensor is given by
(14). An additional equation is needed, and this is provided by
the sediment transport flux law described in the next Section 2.3.

2.3. Sediment flux law

To take account of bottom sediment transport, in addition to the
kinematic bottom boundary condition,

ht þ u � rh ¼ �w; at z ¼ �hðx; tÞ; ð15Þ

a second bottom boundary condition is needed, which is an appro-
priate sediment flux law

ht ¼ r � Q ; ð16Þ

where Q is the sediment flux, evaluated at the bottom. The kine-
matic condition (15) has already been used in deriving the mean
mass Eq. (7). Hence we now also average the sediment flux Eq.
(16) so that
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