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a b s t r a c t

The method of polynomial chaos expansions is illustrated by showing how uncertainties in boundary
conditions specifying the flow from the Caribbean Sea into the Gulf of Mexico manifest as uncertainties
in a model’s simulation of the Gulf’s surface elevation field. The method, which has been used for a vari-
ety of engineering applications, is explained within an oceanographic context and its advantages and dis-
advantages are discussed. The method’s utility requires that the spatially and temporally varying
uncertainties of the inflow be characterized by a small number of independent random variables, which
here correspond to amplitudes of spatiotemporal modes inferred from an available boundary
climatology.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The object of this paper is to point out how uncertainties of
oceanographic simulations might be explored using the method
of polynomial chaos expansions. This method was first introduced
by Wiener (1938), who addressed the question of efficiently esti-
mating uncertainties of a dynamical simulation stemming from
uncertainties in its defining parameters. He realized that, in princi-
ple, a probability density describing the uncertainty of the param-
eters might be propagated dynamically to provide distributional
information about any aspects of the simulation, but there was
the issue of how to do it in practice. By using polynomial expan-
sions to express the simulation’s dependence on the uncertain
parameters, he reduced the problem of propagating uncertainties
to the task of determining expansion coefficients. The phrase
‘‘polynomial chaos’’, which has become popular in the engineering
literature, stems from Wiener’s referring to uncertainty as ‘‘chaos’’

and from his use of a polynomial expansion.2,3 When the outputs of
a simulation are well-approximated by polynomials of the inputs,
polynomial expansions are appropriate, but when they are not, the
expansions may converge slowly or may not converge at all.4 The
‘‘chaos’’ part of the method relates to the choice of the polynomial
basis: as the probability density function describing the uncertainty
of the inputs appears in all expectation integrals, it is best to choose
polynomials that are orthogonal when weighted by that density.

The method certainly should be of interest, as oceanographic
simulations have many uncertain inputs.5 For example, they de-
pend on initial values of temperature, salinity, and other state vari-
ables at each point within the model’s domain, on temporally
varying values characterizing forcing fluxes everywhere on the
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2 Chaos within this context should not be confused with its more modern usage to
indicate sensitivity to small perturbations (Lorenz, 1963).

3 For an introduction to the engineering literature see the reviews by Xiu (2009)
and Najm (2009).

4 While the Cameron–Martin theorem (Cameron and Martin, 1948) guarantees
convergence for any finite variance process, in practice convergence is tested by
checking the impact of retaining more terms in the expansion.

5 Other approaches to oceanographic uncertainty can be found in the books of
Bennett (2002), Evensen (2009), and Wunsch (2006). For discussions of uncertainty in
fields other than oceanography, see the article in the special issue of Journal of
Computational Physics (Karniadakis and Glimm, 2006) in which Lermusiaux (2006)
presents his view of oceanographic uncertainties to a wider audience.
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air-sea boundary, on values used for a variety of transport coeffi-
cients, and when there are open lateral boundaries on the details
of their specification. Quantitative information about the impacts
of their mis-specification could be quite valuable. Not only would
it reveal the limitations of the utility of a simulation, it would also
suggest which inputs must be better known to achieve a more useful
simulation. It is important to recognize that the method of polyno-
mial chaos expansions, like all methods for dealing with uncertainty,
suffers from what Bellman (1957) called the ‘‘curse of dimensional-
ity’’, namely the inescapable fact that computational complexity
increases geometrically with increasing numbers of uncertain
parameters. Thus, in practice, the method is used to examine the
consequences of a limited number of uncertain inputs.

As Kalman filtering (e.g. Evensen, 2009) is better known to
oceanographers, especially within the context of data assimilation
where its role is to characterize the dynamically evolving uncer-
tainties of the model state, comparing it with the method of poly-
nomial chaos expansions can be instructive. The Kalman filter
owes much of its utility to its characterization of the uncertainties
using only an evolving mean state and an evolving matrix of covar-
iances characterizing the state’s uncertainty. The curse of dimen-
sionality manifests in the size of the error-covariance matrix,
which is unmanageably large, so much effort has been devoted
to its approximation. For example, the ensemble Kalman filter
approximates it using covariances inferred from a manageable
number of simulations chosen to sample important aspects of
the state’s uncertainty. The method of polynomial chaos expan-
sions as illustrated here also uses an ensemble of simulations to
characterize the input uncertainties. However, the purpose of the
ensemble is to provide quadrature information needed for evaluat-
ing the expansion coefficients, so the ensemble members are cho-
sen to optimize the accuracy of the coefficients. The resulting
expansions provide not just means and covariances but provide
complete distributional information about the model’s outputs.

It is also useful to note that Monte Carlo methods (e.g. Gilks
et al., 1996), which also seek general distributional information
about outputs, generally require a much larger ensemble of simu-
lations to achieve the same accuracy that might be obtained from
polynomial chaos expansions with a small quadrature ensemble.
Polynomial interpolation between simulations in effect provides
additional implicit sampling. While large Monte Carlo ensembles
are unachievable for computationally intensive simulations, smal-
ler quadrature ensembles might be affordable using today’s com-
putational resources.

If alternative choices for the uncertain parameters are regarded
as perturbations of the favorite choice, then this method might be
regarded as a perturbation method. However, as there is no
requirement that the perturbations be small, the method of poly-
nomial chaos expansions can accommodate information about
large but unlikely perturbations. Within the context of automatic
differentiation, propagation of infinitesimal perturbations is
accomplished using the forward method and tangent-linear codes
for accomplishing this can be generated automatically, but unfor-
tunately they have to be run once for each perturbed input (e.g.
Griewank and Corliss, 1991). On the other hand, sensitivities of a
single output to infinitesimal perturbations of all uncertain inputs
can be computed with automatically generated codes that imple-
ment the reverse or adjoint method.6

To illustrate the method of polynomial chaos expansions, we
examine how uncertainties in the inflow through the Yucatan
Straits manifest in the Gulf of Mexico’s surface-elevation field
and in the behavior of the Loop Current. Because of the Gulf’s

semi-enclosed geography with the Loop Current being the princi-
pal dynamical feature, we thought that the consequences of mis-
specifying the inflow should be interesting. Our challenge was to
find a way to reduce the uncertainties of the spatially and tempo-
rally varying inflow to a few parameters, as we could find no pub-
lished example of a similar problem. As the circulation in the Gulf
is simulated using a high-resolution numerical model, the major
computational expense is the ensemble of simulations needed to
evaluate the coefficients of the polynomial expansions; the cost
of evaluating the coefficients and using them to examine the out-
put uncertainties is trivial in comparison.

Section 2 describes the methodology. After describing the
numerical model used to simulate the Gulf’s circulation, Section 3
explains our approach to reducing the inflow uncertainties to two
random parameters. Section 4 discusses how the expansions are
truncated and the ensemble of simulations needed for evaluating
the coefficients of the polynomials. Then Section 5 presents the
mean and standard deviation of the surface elevation field result-
ing from assumed distribution of possible boundary conditions
and discusses surface-elevation covariances. By showing probabil-
ity densities characterizing the non-Gaussian nature of the model’s
response, Section 6 illustrates how the polynomial expansions can
be used to emulate the numerical model. And section 7 examines
the convergence of the polynomial expansion. Finally, Section 8
concludes with comments about what the method might offer
for oceanographic applications.

2. The methodology

The objective of the method is to assess how uncertainties of in-
puts of a dynamical system manifest in its outputs. To see how it
works, consider the simple case of only a single uncertain input
x, as generalization to two or more is relatively straightforward.7

To express its uncertainty quantitatively, x can be expressed in terms
of a central value x0, which when not accounting for uncertainty
would be used as input, and a spread x1 characterizing the likely
range of values around x0:

x ¼ x0 þ x1n; ð1Þ

where n is a standardized random variable with probability density
function p(n).8 For most problems we might have some idea what
values to use for x0 and x1, but there may be little empirical basis
for our choice of p(n). When there are no fixed bounds on the range
of x, the probability density might be taken as Gaussian. That was in
fact the choice made by Wiener (1938), and that will also be ours,
but other, possibly empirical, densities might be used.

Again for simplicity it is useful to focus on a single output
y = y(n), which might be thought of as the surface elevation at a
particular space–time point.9 The method centers on the assump-
tion that output y can be efficiently described by series of polynomi-

6 Adjoint codes are typically used to compute the gradient of a cost function for use
in algorithms seeking to optimize the choice of a model’s uncertain input parameters.

7 When there is more than one uncertain parameter of interest, x in Eq. (1) becomes
a vector, as do x0 and n, while x1 becomes a matrix.

8 When constructing software that might be used for a variety of applications, it is
useful to standardize n so that it has zero for its central value and a spread of unity.

9 Another approach to polynomial chaos expansion (e.g. Knio and Le Maître, 2006;
Le Maître and Knio, 2010) does require that the uncertainty of all evolving state
variables be computed. In that case the polynomial chaos expansions for all state
variables, each similar to Eq. (2), are inserted into the dynamical equations and the
condition that the residuals be small in a statistical sense produces a system of
equations for the expansion coefficients similar to but more complicated than the
original dynamical system. As this would require software at least as demanding to
construct as that already existing for the numerical model, this option was not
considered for this study. Finette (2006) has proposed this approach for studying
uncertainties of underwater acoustics, Ge et al. (2008) for nonlinear shallow-water
equations, and Shen et al. (2010) for the Lorenz (1984) model. Somewhat similarly,
Sapsis and Lermusiaux (2009) have suggested using a temporal evolving set of basis
functions rather than a fixed polynomial basis.
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