
Balancing task- and data-level parallelism to improve
performance and energy consumption of matrix computations
on the Intel Xeon Phi q

Manuel F. Dolz a, Francisco D. Igual b,⇑, Thomas Ludwig a, Luis Piñuel b,
Enrique S. Quintana-Ortí c

a Dept. of Informatics, University of Hamburg, 22.527 Hamburg, Germany
b Depto. de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28.040 Madrid, Spain
c Depto. de Ingeniería y Ciencia de Computadores, Universitat Jaume I, 12.071 Castellón, Spain

a r t i c l e i n f o

Article history:
Received 14 November 2014
Received in revised form 25 May 2015
Accepted 4 June 2015
Available online 19 June 2015

Keywords:
Power-aware computing
High performance
Many-core architectures
Runtime task schedulers
Dense linear algebra

a b s t r a c t

The emergence of new manycore architectures, such as the Intel Xeon Phi, poses new chal-
lenges in how to adapt existing libraries and applications to this type of systems. In partic-
ular, the exploitation of manycore accelerators requires a holistic solution that
simultaneously addresses time-to-response, energy efficiency and ease of programming.
In this paper, we adapt the SuperMatrix runtime task scheduler for dense linear algebra
algorithms to the many-threaded Intel Xeon Phi, with special emphasis on the performance
and energy profile of the solution. From the performance perspective, we optimize the bal-
ance between task- and data-parallelism, reporting notable results compared with Intel
MKL. From the energy-aware point of view, we propose a methodology that relies on
core-level event counters and aggregated power consumption samples to obtain a
task-level accounting for the energy. In addition, we introduce a blocking mechanism to
reduce power and energy consumption during the idle periods inherent to task parallel
executions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The performance of today’s CMOS-based computer architectures is constrained by the cooling capacity of this technology
and the power budget [1–3]. Concretely, the end of Dennard scaling [4] in the middle of the past decade marked the end of
the ‘‘GHz race’’, and the shift towards multicore designs due to their more appealing performance-energy balance. Since
then, the doubling of transistors on chip with each new semiconductor generation, dictated by Moore’s law [5], has only
exacerbated the problem [6].

In response to the power wall, many high performance computing (HPC) facilities have deployed heterogeneous clusters,
equipped with manycore accelerators, such as AMD or NVIDIA graphics processor units (GPUs) or the Intel Xeon Phi, due to
their favorable energy-performance balance as well as excellent acceleration for many compute-intensive applications.

http://dx.doi.org/10.1016/j.compeleceng.2015.06.009
0045-7906/� 2015 Elsevier Ltd. All rights reserved.

q Reviews processed and recommended for publication to the Editor-in-Chief by Associate Editor Dr. Jesus Carretero.
⇑ Corresponding author.

E-mail addresses: manuel.dolz@informatik.uni-hamburg.de (M.F. Dolz), figual@ucm.es (F.D. Igual), thomas.ludwig@informatik.uni-hamburg.de
(T. Ludwig), lpinuel@ucm.es (L. Piñuel), quintana@icc.uji.es (E.S. Quintana-Ortí).

Computers and Electrical Engineering 46 (2015) 95–111

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate/compeleceng

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2015.06.009&domain=pdf
http://dx.doi.org/10.1016/j.compeleceng.2015.06.009
mailto:manuel.dolz@informatik.uni-hamburg.de
mailto:figual@ucm.es
mailto:thomas.ludwig@informatik.uni-hamburg.de
mailto:lpinuel@ucm.es
mailto:quintana@icc.uji.es
http://dx.doi.org/10.1016/j.compeleceng.2015.06.009
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng

Moreover, the introduction of parallel programming standards, such as CUDA, OpenACC and OpenCL, has further increased
the appeal of accelerator technologies. Nevertheless, programming an heterogeneous platform consisting of one to several
general-purpose multicore processors and one or more manycore accelerators is still a considerable challenge. The reason
is that, in addition to facing the programming difficulties intrinsic to having to exploit an ample amount of hardware con-
currency, in many cases the developer also has to cope with the existence of multiple memory address spaces.

SuperMatrix is the run-time embedded in the libflame library [7] for the execution of dense linear algebra (DLA) oper-
ations on multicore desktop servers [8], heterogeneous CPU–GPU systems [9,10], and small-scale clusters [11]. The
SuperMatrix run-time follows the methodology advocated in the FLAME project, which patronizes a separation of concerns
between the derivation of new algorithms for DLA operations, their practical coding (implementation), and their
high-performance execution on a given platform. SuperMatrix orchestrates a seamless, task-parallel execution of the full
functionality of the libflame DLA library [7].

In this paper, we present an extension of SuperMatrix specifically tailored to tackle the considerable amount of hardware
concurrency in the many-threaded Intel Xeon Phi processor. In doing so, our paper makes the following contributions:

� We adapt SuperMatrix to the Intel Xeon Phi manycore/many-threaded accelerator, demonstrating the benefits of
abstracting the design and implementation of DLA algorithms from their practical, architecture-aware high performance
execution. For our particular scenario, we rely on the native programming model, considering the accelerator as a
stand-alone platform, in charge of the execution of both the runtime and the computational workload. With a research
trend pointing in the direction of integrating accelerators and conventional architectures into the same chip, we envision
an scenario where the accelerator becomes the main processor and, therefore, the native programming model is natural.
� We investigate the impact on performance of exploiting the concurrency implicit to DLA operations at two different

levels: as task-parallelism only, exposed by the run-time, or from a combination of task- and data-parallelism, with
the latter extracted via a multi-threaded implementation of the BLAS (Basic Linear Algebra Subprograms).
� From the perspective of energy efficiency, we describe a methodology that relies on core-level event counters and

aggregated power consumption samples from the complete accelerator to deliver a detailed accounting of the energy dis-
sipated by a DLA operation at the granularity of individual tasks.
� We illustrate the positive effect on energy consumption of modifying the SuperMatrix run-time to adopt an idle-wait

(blocking) approach for idle threads instead of the conventional power-hungry busy-wait (polling).
� We provide an experimental evaluation and validation of the above contributions using a key DLA kernel, the Cholesky

factorization, representative of the parallelism exhibited by many kernels in BLAS and LAPACK.

The rest of the paper is structured as follows. In Section 2 we further motivate our work, we review several related efforts,
and we clarify the differences between these and our approach. In Section 3, we briefly present the SuperMatrix run-time
system using the Cholesky factorization as a workhorse case study. In Sections 4 and 5, we describe and evaluate the differ-
ent approaches that are employed to exploit the hardware concurrency of a 60-core Intel Xeon Phi 5110P accelerator. At this
point, we note that our approach exploits the parallelism present at two different levels: at the task level via worker threads
of the SuperMatrix run-time and at the data-parallel level via BLAS threads. (In addition, the codes implicitly exploit the
SIMD parallelism of the floating-point units, or FPUs, of the Intel Xeon Phi by means of the vector operations embedded
inside tuned implementations of the BLAS.) In Section 6, we introduce our two main energy-related contributions, namely
the methodology to conduct a task-level energy accounting and the evaluation of an energy-aware scheduler. Finally, the
paper is closed with a few concluding remarks in Section 7.

2. Motivation and related work

2.1. High performance and programmability

In recent years, a number of run-times have been proposed to alleviate the burden of programming multi- and
many-threaded platforms. Concretely, OmpSs,1 StarPU,2 and Harmony,3 among others, offer implicit parallel programming
models with dependence analysis. When applied to the DLA operations that lie at the bottom of the ‘‘food chain’’ of many sci-
entific compute-intensive applications [13], SMPSs (a precursor of OmpSs) [14], StarPU, Quark [15] and SuperMatrix [12] have
demonstrated the advantage of extracting task-parallelism using this ‘‘run-time approach’’. Basically, all these software efforts
exploit the task-parallelism implicit to the DLA operation by (semi-) automatically decomposing the operation into tasks while
simultaneously performing a task-dependency analysis. This process is complemented with a dependency-aware out-of-order
scheduling of the tasks to the computational resources at execution.

Among the run-time-based solutions, OmpSs, StarPU, Kaapi and SuperMatrix have all been ported to a heterogeneous
platform equipped with multicore processors and one or more GPU accelerators. OmpSs and Kaapi have also been evaluated

1 http://pm.bsc.es/ompss/.
2 http://runtime.bordeaux.inria.fr/StarPU/.
3 http://code.google.com/p/harmonyruntime/.

96 M.F. Dolz et al. / Computers and Electrical Engineering 46 (2015) 95–111

http://pm.bsc.es/ompss/
http://runtime.bordeaux.inria.fr/StarPU/
http://code.google.com/p/harmonyruntime/

Download English Version:

https://daneshyari.com/en/article/455224

Download Persian Version:

https://daneshyari.com/article/455224

Daneshyari.com

https://daneshyari.com/en/article/455224
https://daneshyari.com/article/455224
https://daneshyari.com

