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a b s t r a c t

Numerical simulations of the two-dimensional lock-exchange flow are used to evaluate the performance
of adaptive meshes as implemented in the non-hydrostatic, finite-element model Fluidity-ICOM. The
lock-exchange is a widely studied laboratory-scale set-up that produces two horizontally propagating
gravity currents and incorporates key physical processes associated with gravity currents over many
scales, including ocean overflows. The Froude number (non-dimensional front speed) is used to assess
simulations performed on structured-fixed, unstructured-fixed and unstructured-adaptive meshes and
different adaptive mesh configurations are compared.

Fluidity-ICOM successfully captures the flow dynamics, including the development of Kelvin–Helm-
holtz billows. Mesh adapts are guided by a metric which is key to the ability of an adaptive mesh to rep-
resent the flow. The metric employed in Fluidity-ICOM is simple, based on the curvature of the solution
fields and user-defined solution field weights. Good representation of the gravity current front region is
essential to the quality of the solution and for the adaptive meshes this is achieved by reducing the hor-
izontal velocity field weight near the boundaries. Adaptive meshes that are configured in this way are
seen to perform as well as high-resolution fixed meshes whilst using at least one order of magnitude
fewer nodes. The Froude numbers also compare well with previously published values determined from
experimental, numerical and theoretical approaches.

The substantial reduction in the number of nodes used by the adaptive meshes is particularly encour-
aging as it suggests that even greater gains may be achieved in three-dimensional simulations and larger-
scale problems. Results show that successful use of the adaptive mesh approach employed requires a
clear understanding of the physics of the system and the metric. These considerations will be vital to
the effective application of adaptive mesh approaches in numerical modelling of more complex ocean
flows.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The lock-exchange is a classic laboratory-scale fluid dynamics
problem (Fannelop, 1994; Huppert, 2006; Simpson, 1987). A flat-
bottomed tank is separated into two sections by a vertical barrier.
One section, the ‘lock’, is filled with the source fluid. This is of dif-
ferent density to the ambient fluid which fills the other section. As
the barrier is removed, the denser fluid collapses under the lighter.
Two gravity currents form and propagate in opposite directions,
one above the other, along the tank. After an initial acceleration,
the gravity current fronts travel at a constant speed until the end
walls exert an influence or viscous forces begin to dominate
(Cantero et al., 2007; Härtel et al., 1999; Huppert and Simpson,
1980). At the current front a bulbous head may develop and

become taller than the trailing fluid. Shear instabilities can mani-
fest at the density-interface (hereafter interface) between the
two fluids (Turner, 1973), and this leads to the formation of
Kelvin–Helmholtz billows that enhance mixing.

This seemingly simple laboratory-scale set-up incorporates the
same physical processes encountered in larger scale gravity cur-
rents such as sediment-laden density currents and ocean over-
flows. Sediment-laden density currents can be formed from
submarine slides and are known geohazards that have generated
tsunamis and caused damage to submarine pipelines and cables
(Fine et al., 2005). Ocean overflows, with scales of 10–100 km, fun-
nel and mix dense water between ocean basins and impact upon
the meridional overturning circulation (Ivanov et al., 2004; Reid,
1979; Speer and Tziperman, 1990). The lock-exchange idealises
these scenarios, presenting a tractable means of studying the pro-
cesses involved and contributing to our understanding of these
real-world flows and their impact.
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The lock-exchange has been the subject of many theoretical,
experimental and numerical studies. Theoretical studies generally
fall into one of two categories: firstly, an inviscid, hydrostatic cur-
rent is assumed to be in steady-state and mass and energy balances
are calculated across one or both heads (Benjamin, 1968; Shin
et al., 2004; von Karman, 1940). This allows the height and speed
of the front to be determined but does not account for the influence
of the source region. Secondly, an initial value problem is consid-
ered which uses the shallow water equations to find the character-
istics of the flow (Klemp et al., 1994; Rottman and Simpson, 1983).
This allows source effects to be considered but also requires a front
condition in order to close the problem. This can be taken from
experimental data or steady-state flow theory and if chosen cor-
rectly can lead to good agreement between the theory and exper-
imental results (Rottman and Simpson, 1983; Shin et al., 2004).
Experimental studies have provided considerable insight into the
dynamics of gravity currents including mixing, head dynamics
and the Kelvin–Helmholtz instability (Britter and Simpson, 1978;
Keulegan, 1958; Simpson and Britter, 1979; Thomas et al., 2003),
as well as Reynolds number effects and fixed volume and partial-
depth releases (Huppert and Simpson, 1980; Rottman and Simp-
son, 1983; Shin et al., 2004). Numerical investigations utilise a
variety of different discretisation methods, e.g. spectral, finite-ele-
ment, finite-difference (Elias et al., 2008; Fringer et al., 2006; Här-
tel et al., 2000; Kao et al., 1978). Such simulations have reproduced
the behaviour observed in the laboratory experiments and facili-
tated investigation of aspects such as the difference between
two-dimensional and three-dimensional gravity current flows,
e.g. Härtel et al. (2000).

Numerical simulation of gravity currents is challenging. The
turbulent dynamics and, in particular, the mixing at the interface
between the fluids are governed by non-hydrostatic processes.
These are complex and typically small compared to the scale of
the whole domain. In real-world scenarios the range of scales in-
volved can be considerable. For example, using a fixed uniform
mesh with sufficient resolution to directly resolve the dynamics
of an overflow in a ocean basin scale domain will clearly be com-
putationally exorbitant. If the mathematical formulation employed
is hydrostatic and/or the resolution is insufficient to capture the
turbulent dynamics then a parameterisation is required to repre-
sent the mixing in the flow, e.g. Chang et al. (2005), Klemp et al.
(1994) and Özgökmen et al. (2007). As a result, overflows are usu-
ally represented by a parameterisation in ocean circulation models
(Griffies et al., 2001; Haidvogel and Beckmann, 1999; Legg et al.,
2006). The promise of adaptive mesh techniques (adaptivity) is
that they refine or coarsen the mesh depending on the evolution
of flow complexity, allowing the dynamics to be resolved over a
range of scales in an efficient manner (Pain et al., 2001; Piggott
et al., 2009).

Here, the impact of mesh adaptivity, as implemented in Fluid-
ity-ICOM,1 on numerical simulations of the two-dimensional lock-
exchange problem is evaluated. Fluidity-ICOM is a finite-element
model which here solves a non-hydrostatic, Boussinesq formulation
of the Navier–Stokes equations, Section 2.1 (Munday et al., 2010;
Piggott et al., 2008). The results presented are obtained by numerical
simulation on structured-fixed, unstructured-fixed and unstruc-
tured-adaptive meshes. Comparison with laboratory experiments
and theoretical studies is vital for model assessment. The Froude
number (non-dimensional front speed) is often calculated providing
an excellent diagnostic for this purpose. With a view to modelling
ocean overflows and larger-scale ocean dynamics, the efficient use
of computational resources and verification of Fluidity-ICOM is
clearly necessary. Furthermore, using an adaptive mesh adds an-

other layer of numerical complexity to the simulation configuration.
Therefore, a careful understanding of the impact of adaptivity on the
simulated phenomena is key to separating the consequences of using
an adaptive mesh from the effects of changing other numerical set-
tings or the physical properties of the problem.

The paper is organised as follows: Sections 2 and 3 describe the
physical lock-exchange set-up and Fluidity-ICOM. Section 4 pre-
sents and discusses the results from the numerical simulations,
comparing them to each other and previously published results. Fi-
nally, Section 5 closes with the key conclusions of this work.

2. Physical set-up

2.1. Governing equations and parameters

The flow is governed by the Navier–Stokes equations under the
Boussinesq approximation, where the density is considered con-
stant except in the buoyancy term:

@u
@t
þ u � ru ¼ �rp� q

q0
gkþ mr2u; ð1Þ

r � u ¼ 0; ð2Þ

with t the time, u = (u,v,w)T the velocity field, p the pressure, q the
density, q0 the background density, g the acceleration due to grav-
ity, m the kinematic viscosity and k = (0,0,1)T. These are combined
with a linear equation of state and the thermal advection–diffusion
equation:

q ¼ q0 þ q0 ¼ q0ð1� aTÞ; ð3Þ
@T
@t
þ u � rT ¼ jr2T; ð4Þ

with T the temperature, j the thermal diffusivity and a the thermal
expansion coefficient. The values for g, m, j, and a are given in
Table 1, following primarily the values of Härtel et al. (2000). When
Eq. (3) is substituted into Eq. (1), q0 cancels and therefore no value
need be set. As the overall density perturbation is at least three or-
ders of magnitude smaller than the background density the use of
the Boussinesq approximation is valid (Spiegel and Veronis, 1960).

2.2. The domain, boundary conditions and initial conditions

The domain is a two-dimensional rectangular box,
0 6 x 6 0.8 m, 0 6 z 6 H, H = 0.1 m. As the configuration of the
model used here is two-dimensional, motion in the cross-stream
(y) direction is neglected. Initially, dense, cold water fills one half
of the domain, T = �0.5 �C for x < 0.4 m, and light, warm water fills
the other half, T = 0.5 �C for x P 0.4 m, Fig. 4. At t = 0 s, u = 0 ms�1

everywhere.
A free-slip condition (no normal flow), is applied to the end

walls with u = 0 ms�1 at x = 0.0, 0.8 m. A no-slip condition (no
flow), is applied at the bottom boundary, u = 0 ms�1 at z = 0 m

Table 1
Physical parameters for the lock-exchange set-up.

Gravitational acceleration (ms�2) g 10
Kinematic viscosity (m2 s�1) m 10�6

Thermal diffusivity (m2 s�1) j 0
Thermal expansion coefficient

(�C�1)
a 10�3

Domain height (m) H = 2h 0.1
Reduced gravity (ms�2) g0 ¼ g q1�q2

q0
¼ �gaðT1 � T2Þ 10�2

Buoyancy velocity (ms�1) ub ¼
ffiffiffiffiffiffiffiffi
g0H

p ffiffiffiffiffiffiffiffiffiffiffi
10�3

p
Grashof number

Gr ¼ h
ffiffiffiffiffi
g0h
p
m

� �2 1.25 � 106
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