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The Equation of State of seawater (EOS) relates in situ density to temperature, salinity and pressure. Most
of the effort in the EOS-related literature is to ensure an accurate fit of density measurements under the
conditions of different temperature, salinity, and pressure. In situ density is not of interest by itself in oce-
anic models, but rather plays the role of an intermediate variable linking temperature and salinity fields
with the pressure-gradient force in the momentum equations, as well as providing various stability func-
tions needed for parameterization of mixing processes. This shifts the role of EOS away from representa-
tion of in situ density toward accurate translation of temperature and salinity gradients into adiabatic
derivatives of density.

In this study we propose and assess the accuracy of a simplified, computationally-efficient algorithm
for EOS suitable for a free-surface, Boussinesq-approximation model. This EOS is optimized to address
all the needs of the model: notably, computation of pressure gradient - it is compatible with the monot-
onized interpolation of density needed for the pressure gradient scheme in sigma-coordinates of Shche-
petkin and McWilliams (2003), while more accurately representing the pressure dependency of the
thermal expansion and saline contraction coefficients as well as the stability of stratification; it facilitates
mixing parameterizations for both vertical and lateral (along neutral surfaces) mixing; and it leads to a
simpler, more robust, numerically stable barotropic-baroclinic mode splitting without the need of exces-
sive temporal filtering of fast mode. In doing so we also explore the implications of EOS compressibility
for mode splitting in non-Boussinesq free-surface models with the intent to design a comparatively accu-
rate algorithm applicable there.

© 2011 Elsevier Ltd. All rights reserved.

1. Role of EOS in oceanic modeling

The Equation of State (EOS) relates the in situ density of seawa-
ter with its temperature (or potential temperature), salinity, and
pressure (O, S, P, respectively),

P = Pros(6.5.P). (1.1)

In a Boussinesq-approximation oceanic modeling code, in situ den-
sity does not appear by itself (since it is replaced by a constant ref-
erence density). Instead EOS and EOS-related quantities are needed
for the following computations:

e Pressure-gradient force (PGF);

o Vertically averaged density p and the effective dynamic density
for the barotropic mode p, (vertically integrated pressure nor-
malized by gD?/2 where g is acceleration of gravity and D is
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the local column thickness), both of which participate in baro-
tropic-baroclinic mode-splitting algorithm of Shchepetkin and
McWilliams (2005,);

o Stability of stratification as well as external thermodynamic
forcing (surface buoyancy flux) needed for mixing and plane-
tary boundary layer parameterizations;

o Slope of neutral surfaces needed for horizontal (along-isopyc-
nal) mixing (Griffies et al., 1998).

The purpose of this study is to review the present oceanic mod-
eling practices for using EOS in these roles, focusing on the effects
associated with seawater compressibility, and it assesses the con-
sequences of the Boussinesq approximation in the context of a
realistic EOS. The present study extends the analysis of conse-
quences of Boussinesq approximation from Shchepetkin and
McWilliams (2008).

This paper is organized as follows: Section 2 makes a overview
of the Boussinesq approximation, analyzes the errors associated
with using realistic seawater EOS, and introduces stiffening of
EOS as a method to reduce these errors. Section 3 examines the
consequences of finite compressibility of seawater for the four
algorithmic roles outlined above, to establish requirements for
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the most suitable functional form of EOS. Special attention is given
to barotropic-baroclinic mode-splitting since this subject is rarely
discussed in the literature. Section 4 introduces a practical form of
EOS and makes estimates of its accuracy. Section 5 explores the
consequences of eliminating the Boussinesq approximation with
the emphasis on accuracy of barotropic-baroclinic mode-splitting
algorithm in the context of finite compressibility of seawater. Sec-
tion 6 is the conclusion.

2. Boussinesq approximation and EOS stiffening

The Boussinesq approximation (e.g., Spiegel and Veronis, 1960;
Zeytounian, 2003, among others) replaces in situ density p with a
constant reference value pq in all places where it plays the role
of a measure of inertia, i.e., everywhere except where multiplied
by the acceleration of gravity g. The velocity field becomes non-
divergent (incompressible) because the continuity equation
changes its meaning from mass to volume conservation. This re-
verses the role of EOS from computing specific volume in a
mass-conserving model to density p in a volume-conserving one.
The conservation laws (momentum, energy, tracer content, etc.)
are changed from mass-to volume-integrated; the thermodynam-
ics is reduced to Lagrangian conservation (advection and diffusion)
of ® and S, while heating/cooling of fluid by adiabatic compres-
sion/expansion is neglected (except in the definition of potential
temperature itself) and mechanical energy dissipated by viscosity
is considered “lost” rather than converted into heat (Mihaljan,
1962). If EOS is a linear function of @ and S, mass is conserved
(along with volume) as a consequence of, and to the same degree
as, the conservation of @ and S; external heating/cooling produces
a decrease/increase in mass, while keeping volume constant; and
nonlinear EOS causes a Boussinesq model to conserve only volume,
but no longer mass, even in the absence of external forcing.

The Boussinesq approximation brings simplifications by elimi-
nating mass-weighting in a finite-volume code and limiting the
role of EOS to the four purposes stated in Section 1. Except in the
part of pressure-gradient term associated with perturbation of free
surface in a free-surface model, p itself can be replaced with its
perturbation, p’ = p — po, because it appears only inside spatial
derivatives (ultimately linked to the gradients of @ and S) and only
in the context of buoyancy commonly defined as —gp’/po, i.e., nor-
malized by po, whereas the equations can always rewritten in such
a way that py itself appears only in the context of this normaliza-
tion and nowhere else. The Boussinesq approximation facilitates
the barotropic-baroclinic mode-splitting in a pair of vertically-
integrated free-surface and momentum equations, effectively
uncoupling EOS from the barotropic mode. The incompressibility
assumption eliminates acoustic waves regardless of whether the
hydrostatic approximation is made.

However, physically important effects associated with seawater
- cabbeling and thermobaricity - fundamentally require pressure-
dependency in EOS and lead to the common practice of using the
full non-approximated EOS, thus retaining its full compressibility
even in an otherwise dynamically incompressible Boussinesq mod-
el. This obscures the concept of buoyancy because it can no longer
be equated to the density (or potential density) anomaly, and can
no longer be viewed as a Lagrangianly-conserved properly of the
fluid, even thought @ and S are. A related, frequently used approx-
imation is the replacement of the full in situ pressure P in EOS (1.1)
with its bulk hydrostatic reference value, P - —pogz, when com-
puting p from the model prognostic variables, ® and S, hence
neglecting pressure variation due to baroclinic effects and essen-
tially decoupling EOS pressure from the dynamic.

Under most offshore oceanic conditions p varies by ~ + 3% rel-
ative to its reference value; this leads to errors associated with the

Boussinesq approximation which can be subdivided into two
categories:

(i) errors relative to not using the Boussinesq approximation
including not only quantitative, but conceptual as well, i.e.,
excluded physical processes and/or missing/altered conser-
vation laws; and

(ii) conflicts and internal inconsistencies caused the use of a
realistic seawater EOS with full compressibility effects
within a Boussinesq oceanic model.

Errors of type (i) are widely discussed in the literature
(McDougall and Garrett, 1992; Dukowicz, 1997; Lu, 2001;
Greatbatch et al., 2001; Huang and Jin, 2002; McDougall et al.,
2002; Greatbatch and McDougall, 2003; Losch et al., 2004; Griffies,
2004; Young, 2010; Tailleux, 2009; Tailleux, 2010).

An example of an internal inconsistency of type (ii) can be illus-
trated by considering a barotropic compressible fluid layer whose
density is a function of P alone (i.e., because @, S are spatially uni-
form) and in hydrostatic balance,

p = Peos(P) and 9P =—gp. (2.1)
Integration of (2.1) yields mutually consistent vertical profiles for P
and p,

p =R -2) = pgos(P( - 2)),

P({—2z) =gR({ - 2),
P(0) =P|,_, =0,
(2.2)

such that {

where P and R are universal functions of a single argument, i.e.,
their structure depends only one the properties of pgos(P) in (2.1)
but not directly on the local dynamical conditions, such as pertur-
bation of the free-surface {. 7’ denotes derivative of P with respect
to its argument (note that the sign is correct as stated above: both p
and p increase with increase of { — z, meaning increase downward).
The condition P(0) = 0 is the free-surface pressure boundary condi-
tion (for simplicity the atmospheric pressure is presumed to be con-
stant and subtracted out).
A gradient of { induces a pressure gradient,

=ViP = -P'({~2)- Vi, (2.3)
and creates acceleration

1 _ Pl-2 o, _
*vap = *m'vxé =gV, (2.4)

independently of vertical coordinate z regardless of the specific
functional form pgos(P) in (2.1) and of the magnitude of the density
variation within the column. Eq. (2.4) is derived without the use of
Boussinesq approximation. Its Boussinesq analog is
1 R(-2)
—— Vi P=-g——=.V,(. 2.5
Po Po i @3)

The presence of the multiplier R/p,, which increases with depth, is
clearly an artifact of the Boussinesq approximation. It results in an
unphysical vertical shear in the acceleration, hence a spurious
downward intensification of a geostrophically-balanced baroclinic
current generated by a V,{. Both these spurious effects are caused
by the standard algorithmic chain in a Boussinesq model,

1
0,5 — p = Ppos(0,5,P = peg({ - 2)) — —;vap- (2.6)

To estimate the significance of this error, consider for simplicity a
linear analog of (2.1),

Pros(P) = py +P/c, (2.7)
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