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a b s t r a c t

Accurate representation of geostrophic and hydrostatic balance is an essential requirement for numerical
modelling of geophysical flows. Potentially, unstructured mesh numerical methods offer significant ben-
efits over conventional structured meshes, including the ability to conform to arbitrary bounding topog-
raphy in a natural manner and the ability to apply dynamic mesh adaptivity. However, there is a need to
develop robust schemes with accurate representation of physical balance on arbitrary unstructured
meshes. We discuss the origin of physical balance errors in a finite element discretisation of the
Navier–Stokes equations using the fractional timestep pressure projection method. By considering the
Helmholtz decomposition of forcing terms in the momentum equation, it is shown that the components
of the buoyancy and Coriolis accelerations that project onto the non-divergent velocity tendency are the
small residuals between two terms of comparable magnitude. Hence there is a potential for significant
injection of imbalance by a numerical method that does not compute these residuals accurately. This
observation is used to motivate a balanced pressure decomposition method whereby an additional ‘‘bal-
anced pressure’’ field, associated with buoyancy and Coriolis accelerations, is solved for at increased accu-
racy and used to precondition the solution for the dynamical pressure. The utility of this approach is
quantified in a fully non-linear system in exact geostrophic balance. The approach is further tested via
quantitative comparison of unstructured mesh simulations of the thermally driven rotating annulus
against laboratory data. Using a piecewise linear discretisation for velocity and pressure (a stabilised
P1P1 discretisation), it is demonstrated that the balanced pressure decomposition method is required
for a physically realistic representation of the system.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Unstructured mesh methods offer the potential for simulations
of a wider range of ocean phenomena than is possible using con-
ventional structured meshes. The additional topological freedom
offered by the approach enables the model mesh to conform to
complex bounding topography, and for resolution to be varied lo-
cally so as to resolve flow regions of relatively increased dynamical
importance. In addition, model resolution may be varied with time,
via dynamic mesh adaptivity, to enable an optimised mesh to be
maintained as flow features develop. Hence, while unstructured
mesh methods may be more expensive for a given number of com-
putational degrees of freedom, the extensibility of the methods al-
lows simulations to be conducted in complex geometries, and for
flow features to be resolved on multiple scales, at relatively de-
creased computational cost.

The geometric flexibility of unstructured mesh methods has
previously been exploited to enable simulations in complex coastal
geometries. Recent applications are described in Lambrechts et al.
(2008), Wang et al. (2009) and Le Bars et al. (2010). In Chen et al.
(2007) an unstructured finite volume model, the Finite Volume
Coastal Ocean Model (FVCOM) is compared against two structured
finite difference models in a number of idealised test cases. FVCOM
is found to yield more accurate results, particularly as compared
against finite difference solutions on grids with a piecewise-con-
stant (‘‘stair-cased’’) representation of the bounding topography.

On the global-scale, by far the majority of ocean models in use
today are implemented using structured computational meshes
(Griffies et al., 2000). A notable exception is the Finite Element
Ocean Model (FEOM), which solves the hydrostatic primitive equa-
tions using tetrahedral meshes that are unstructured in the hori-
zontal and aligned in the vertical (Danilov et al., 2004). FEOM has
been applied to simulations of the North-Atlantic at eddy-permit-
ting resolution (Danilov et al., 2005), and an extension including a
sea-ice component has been applied to the global ocean (Timmer-
mann et al., 2009).
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The strong asymmetry between the horizontal and vertical
dimensions in the ocean typically leads one to choose structured,
vertically aligned ‘‘chains’’ of nodes in the vertical, even where
an unstructured mesh is chosen in the horizontal. However, a num-
ber of localised ocean phenomena are strongly non-hydrostatic
and include significant vertical structure. These include open ocean
deep convection (Jones and Marshall, 1993; Marshall et al., 1999)
and gravity currents (see for example Legg et al. (2006) and Hiester
et al. (2011) for recent vertically unstructured dynamic-mesh-
adaptive simulations). In a multi-scale unstructured mesh ocean
model there is the potential for such localised features, with signif-
icant vertical structure, to be resolved within a much larger, more
coarsely resolved, system. Hence there is interest in the develop-
ment of methods utilising more general vertical coordinates. The
use of fully unstructured meshes in ocean modelling, with the
relaxation of an imposed structure in the vertical dimension, is dis-
cussed in Pain et al. (2005) and Piggott et al. (2008a).

In this paper we consider the issue of physical balance represen-
tation on such general unstructured meshes. Geophysical systems,
such as the atmosphere and ocean, are generally in geostrophic
and hydrostatic balance to leading order. Since the dynamics are
generally a small deviation from this balanced state, it is essential
that any numerical model of geophysical systems is able to represent
these balances accurately. Issues with representation of hydrostatic
balance in r-coordinate modelling are well-known (Gary, 1973;
Mellor et al., 1994; Chu and Fan, 2003; Berntsen and Thiem, 2007).
In Ford et al. (2004a,b) similar errors are addressed in unstructured
mesh finite element modelling; pressure gradient errors for a flow
over steep topography are identified and mitigated using an auxil-
iary solver for the hydrostatic pressure. This is a vertically unstruc-
tured analogue of the hydrostatic pressure solver described in
Marshall et al. (1997a,b), albeit with no additional solver for a sur-
face pressure component. In Piggott et al. (2008b) the approach is
generalized via a decomposition of the full dynamical pressure into
a ‘‘balanced pressure’’ component associated with buoyancy and
Coriolis accelerations, and a ‘‘residual pressure’’ component.

Here we week to describe the mathematical basis for such pres-
sure decomposition methods in the context of fully unstructured
mesh finite element modelling. We further test the improvement
in accuracy of balance representation for a number of finite ele-
ment pairs. The method is found to lead to very significant
improvements for certain discretisations (specifically the stabilised
P1P1 finite element pair, detailed in Section 3.1), but very little for
others. The balanced pressure decomposition method is therefore
proposed as a method for allowing certain discretisations, and in
particular low order stabilised finite element pairs, to be applied
to unstructured mesh ocean modelling, without a prohibitive loss
of physical balance accuracy.

In Section 2 we use a Helmholtz decomposition of the forcing
terms in the momentum equation to motivate an auxiliary solver
for the pressure associated with buoyancy and Coriolis accelerations
(the ‘‘balanced pressure’’ component). In Section 3 a fully non-linear
system in exact geostrophic balance is described, and used to quan-
tify the increase in geostrophic balance accuracy when applying the
balanced pressure decomposition method. In Section 4 a laboratory-
scale geophysical analogue, the thermally driven rotating annulus, is
used to validate the method against laboratory data; the computa-
tional cost of the method is also measured. Finally, Section 5 con-
tains some concluding remarks, including a brief discussion of
additional issues encountered when applying vertically unstruc-
tured mesh methods in large aspect ratio domains.

2. Formulation

In this section we motivate and formulate the balanced
pressure decomposition method. In Section 2.1 the origin of

geostrophic and hydrostatic balance errors is described via a Helm-
holtz decomposition of forcing terms in the momentum equation.
In Section 2.2 it is shown that the fractional time-step pressure
projection method may be modified, via the introduction of an
additional diagnostic solve for the ‘‘balanced pressure’’ associated
with the Coriolis and buoyancy accelerations, so as to increase
the accuracy of physical balance representation. A solver for the
balanced pressure is described in Section 2.3.

2.1. Continuous formulation

Consider the incompressible Navier–Stokes equations subject to
Dirichlet boundary conditions:

@u
@t
þ f ¼ �rpþ bþ F; ð1aÞ

r � u ¼ 0; ð1bÞ
u ¼ uD on @X; ð1cÞ

where u is the Eulerian velocity, uD is the value of velocity on the
boundary oX bounding the domain X, f is the Coriolis acceleration,
b is the buoyancy acceleration, F contains all remaining forcing
terms (including advection and any viscous dissipation) and p is
the pressure (divided by a reference density q0). We limit ourselves
to consideration of Dirichlet boundary conditions satisfying the no-
normal-flow condition uD � n̂ ¼ 0 on @X.

We make use of the Helmholtz decomposition (Weyl, 1940;
Ladyzhenskaya, 1969; Denaro, 2003): for a vector field G 2 L2(X)
together with one boundary condition of:

n̂ � G ¼ G@X;n on @X; ð2aÞ
n̂� G ¼ G@X;t on @X; ð2bÞ

where n̂ is a unit normal on oX, there exists a unique and orthogo-
nal decomposition:

G ¼ rUþr� Aþ H ð3Þ

for some scalar potential U 2 H1(X), vector potential A 2 H1(X) and
harmonic residual H 2 L2(X). Note that while the terms in this
decomposition are unique, the potentials themselves are not –
one can add a constant to U and the gradient of a scalar to A, with
no influence on their gradient and curl respectively. rU is curl-free
(irrotational), r� A is divergence free (solenoidal) and H is both
curl-free and divergence free. Hereafter the scalar potential gradient
term rU is referred to as the conservative component, denoted GC,
and the remaining divergence free terms (r � A + H) are referred to
as the residual component, denoted GR.

By incompressibility (1b), the Eulerian acceleration @u/@t is
divergence free, and hence its conservative component is identi-
cally zero. Hence the conservative component in the Helmholtz
decomposition of all forcing terms in the momentum equation,
(�f + b + F), is identically cancelled by the pressure gradient, and
the scalar potential associated with the forcing terms in the
momentum equation is identified as the dynamical pressure. This
yields the familiar result that the dynamical pressure is slaved to
the Eulerian acceleration, and acts only as a Lagrange multiplier
via which the incompressibility constraint is applied (see, for
example, Salmon (1988)). By Eqs. (1a) and (1b) and the no-nor-
mal-flow condition uD � n̂ ¼ 0 on @X, the pressure can be diag-
nosed up to a physically unimportant additive constant. The
dynamics can be entirely described without consideration of the
pressure, motivating the use of vorticity space formulations in
which the pressure gradient is entirely absent.

We now perform separate Helmholtz decompositions of the
Coriolis and buoyancy accelerations, B = �f + b, and all other forc-
ings, F. Noting that the scalar potential component is associated
with a pressure, this takes the form:
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