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a b s t r a c t

The Resonant Triad Model (RTM) developed in (Ibragimov, 2007), is used to study the Thorpe’s problem
(Thorpe, 1997) on the existence of self-resonant internal waves, i.e., the waves for which a resonant inter-
action occurs at second order between the incident and reflected internal waves off slopes. The RTM
represents the extension of the McComas and Bretherton’s three wave hydrostatic model (McComas and
Bretherton, 1977) which ignores the effects of the earth’s rotation to the case of the non-hydrostatic ana-
lytical model involving arbitrarily large number of rotating internal waves with frequencies spanning the
range of possible frequencies, i.e., between the maximum of the buoyancy frequency (vertical motion)
and a minimum of the inertial frequency (horizontal motion). The present analysis is based on classifica-
tion of resonant interactions into the sum, middle and difference interaction classes. It is shown in this
paper that there exists a certain value of latitude, which is classified as the singular latitude, at which
the coalescence of the middle and difference interaction classes occurs. Such coalescence, which appar-
ently had passed unnoticed before, can be used to study the Thorpe’s problem on the existence of self-
resonant waves. In particular, it is shown that the value of the bottom slope at which the second-order
frequency and wavenumber components of the incident and reflected waves satisfy the internal wave
dispersion relation can be approximated by two latitude-dependent parameters in the limiting case when
latitude approaches its singular value. Since the existence of a such singular latitude is generic for reso-
nant triad interactions, a question on application of the RTM to the modeling of enhanced mixing in the
vicinity of ridges in the ocean arises.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recent observations based on measurement of microstructure
show that mixing is considerably increased over bottom irregular-
ities. For example, studies by Legg (2004), Legg and Adcroft (2003),
Polzin et al. (1997), Wunsch and Ferrari (2004) conclude that one
potential region for strong non-linear effects and mixing occurs
over rough sloping bottom topography, e.g., Mid-Atlantic Ridge
(see e.g., Thorpe, 2001 or Legg, 2004). In particular, the numerical
results and analytical studies by Ibragimov (2008a) of internal tide
generation over a continental slope confirm the (Lien and Gregg,
2001) predictions, based on measurements, that the turbulent dis-
sipation is increased due to non-linear effects and mixing over
ridges. The problem of reflection of internal waves from a plane
boundary in different contexts was studied in Eriksen (1982), Ivey
and Nokes (1989), Slinn and Riley (1998), Thorpe (2001), Thorpe
(1997). Recent laboratory observations of reflected internal waves
on sloping boundaries at a moderately large Reynolds number
were reported in Gostiaux and Dauxois (2006). The particular
question of reflecting internal wave beams was studied in Gerkema

et al. (2006) and Tabaei et al. (2005). The group invariant proper-
ties of internal gravity wave beams considered in Tabaei et al.
(2005) were also recently investigated in Ibragimov and Ibragimov
(2009).

The problem which forms our main focus of interest here is to
employ the Resonant Triad Model (RTM) developed in our previous
studies in Ibragimov (2008a), Ibragimov (2007) to the Thorpe’s
problem in Thorpe (1997) on the interaction between internal
waves reflecting from a sloping bottom inclined at a certain angle
to the horizontal. The question of particular interest in this paper is
”Consider an internal wave whose energy propagates parallel to the
group velocity in direction inclined at the given angle to the horizontal.
Then, at what slope of a boundary are incident internal waves reso-
nant, at second order, with the reflected waves?”

This particular question has not been examined by Thorpe
(1997), where the conditions for possible self-resonance for waves
that are not in a plane normal to the slope were obtained. The re-
sults relevant to the present studies on reflection of internal waves
from sloping topography, which will also be used in this paper,
were summarized in LeBlond and Mysak (1978)). The discussion
on the oceanic volume within which the incident and reflected
waves composing a group overlap can interact has been reported
recently in Thorpe (2001). The latter studies were motivated by
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the reason that, since the generation and interaction of waves is
transient in the ocean, the waves can reach the boundary as short
groups of finite dimensions (Thorpe, 2001). The results reported in
Thorpe (1997), Thorpe (2001) and LeBlond and Mysak (1978))
were obtained with the ignored effects of the earth rotation.
However, as it has been shown in the previous studies (see e.g.,
Ibragimov, 2008a, 2007 and MacKinnon and Winters, in press),
the energy transfers within the oceanic internal wave field are
strongly latitude dependent.

This article provides two independent answers to the above
question: direct and circumstantial. Both answers are obtained from
the RTM model. While the former answer is obtained as the direct
application of the RTM model, the latter answer is the ingenious
application of the latitude-dependent classification of resonant
interactions. It is demonstrated on the example basis that, at a cer-
tain value of latitude, the RTM model (which assumes the bound-
ary conditions at a flat bottom) can also be utilized to approximate
the resonant interaction of internal waves impinging and reflected
off a sloping boundary.

The model example provided in this article is based on studying
two low modes resonant triads. The possibility of prolongation of
the narrow modeling scenario studied here to the case of internal
waves of low and high mode numbers limited by the size of the
incident wave groups studied in Thorpe (2001) in the presence of
the earth’s rotation is a prospective direction for further studies.

2. Experimental model

Our starting point here is the weakly non-linear model of a two-
dimensional stratified fluid motion away from frictional boundary
layers in the simplest case of incompressible, uniformly stratified
flow. Additionally, we focus on the deep ocean, so effects of baro-
tropic advection are neglected in our studies. The simulations were
done using a non-hydrostatic analytical model which describes
two-dimensional flow vertically confined to lie between two hori-
zontal rigid boundaries at z ¼ 0 (rigid lid approximation for the
free surface) and z ¼ �H at the flat bottom, where H is the range
independent depth of the water column. Explicit viscosity and dif-
fusion terms are ignored. Without loss of generality, it is assumed
hereafter that the horizontal x coordinate is increasing eastward
and the transverse horizontal coordinate y northward. It is also as-
sumed that the horizontal length scales are smaller than the radius
of the earth, so that the model is considered in a local Cartesian
system on a tangent ðx; zÞ-plane.

Under these flow conditions, within the Boussinesq approxima-
tion (the density variations are neglected everywhere except in the
gravitational term), the governing two-dimensional equations for a
stratified inviscid medium, observed in a system of coordinates
rotating with angular velocity X

!
, are

q0
@ u!

@t
þ u!�r u!þ 2X

!� u!
" #

¼ �rp� gqbk; ð1Þ

@q
@t
þ u!�rqþw

dq
dz
¼ 0; ð2Þ

r � u!¼ 0; ð3Þ

where q0 is the constant reference density, q is the density pertur-
bation from the ambient profile qðzÞ, p is is the pressure deviation
from the basic state, u!¼ ðuðx; z; tÞ;vðx; z; tÞ;wðx; z; tÞÞ is the velocity
vector consisting of zonal, meridional and vertical components, bk is
the unit vector in the vertical (positive upward) direction z. The
term 2X

!� u! is referred to as the Coriolis acceleration.
Eqs. (1)–(3) are five non-linear equations for five unknowns

u!; p and q0. Because of the anisotropic nature of the internal wave
motion (the frequency of internal waves depends on the direction

of the wavenumber vector k
!

but not on its magnitude), the follow-
ing dispersion relation between two-dimensional wavenumber
vector, k

!
¼ ðk;mÞ and frequency of internal waves holds:

x2 ¼ N2 sin2 dþ f 2 cos2 d; ð4Þ

where f ¼ 2X sin h is the latitude-dependent Coriolis parameter, in
which h is latitude and X ¼ 2p rad/day � 0:73� 10�4 s�1 is the rate
of the earth’s rotation. Additionally, in the relation (4), N is a buoy-
ancy frequency defined by

N ¼ �g
q0

dq
dz

� �1
2

ð5Þ

and d is the angle between the wavenumber vector k
!

and the hor-
izontal. As it is manifested from the dispersion relation written in
the form (4), the frequency band for internal waves is limited, i.e.,
x can change between the maximum of the buoyancy frequency
N for the horizontal wavenumber vector (vertical motion) and the
minimum of the inertial frequency f for the vertical wavenumber
vector (horizontal motion). The analysis presented in this article
is valid including the latter two limiting cases of internal waves
propagation.

In present simulations, it is assumed that N ¼ const. While this
simplification is commonly used in laboratory and theoretical
studies and it is quite reasonable for the thermocline region, it is
not common in the deep region of the ocean.

Here we summarize that part of the RTM which is essential for
our analysis.

In two dimensions, the incompressibility condition (3) is taken
into account to eliminate the pressure by introducing a stream
function w via u ¼ wz; w ¼ �wx. To model weakly non-linear inter-
actions, we look for solution of Eqs. (1)–(3) in the form

w; v;qð Þ ¼
X1
i¼1

ei wi; v i;qið Þ; ð6Þ

where e is a small parameter representing the ratio of typical parti-
cle speed to the typical phase speed of the waves. The appropriate
bottom boundary conditions are wðx;0; tÞ ¼ wðx;H; tÞ ¼ 0, where
the rigid lid approximation is assumed.

Due to the imposed boundary conditions, the discrete vertical
structure mode eigenvalue problem for the stream function
w1ðx; zÞ is allowed. Namely, we can look for solutions of the 0ðeÞ
problem in the following mode-discretized decomposition:

w1;q1;v1ð Þ ¼
X

i
ai

xi

ki
sin /i;

N2

g
sin /i; �f

mi

ki

� �
cos /i

 !
sin mizð Þ;

ð7Þ

where ai is an amplitude of the isopycnal displacement,
/i ¼ kix�xit þui is the phase of ith wave of the frequency xi

and ui is a phase constant.
It is the well-known result of the previous studies outlined

Section 1 that the weakly-non-linear interactions become evident
at the second-order terms of the non-linear problem. Namely,
the non-linear terms arising in the 0ðe2Þ problem of Eqs. (1)–(3)
give rise to sinusoidal waves with wave numbers and frequencies
equal to the sum (or difference) of the wave numbers and frequen-
cies of the primary waves, and proportional to the product of their
amplitudes which means that the interaction of ith and jth wave
produces a forcing term of the form cosð/i � /jÞ and sinð/i � /jÞ
in the 0ðe2Þ problem. Some of the terms may be solutions of the
homogeneous problem. Resonance then occurs, and the forced
waves may build up after a sufficient number of oscillations to
be comparable in magnitude with the primary waves.

The resonant wave simulator reported in Ibragimov (2008a)
represents the further development of the model reported in
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