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a b s t r a c t

Modern wave models require an accurate computation of the nonlinear wave–wave interactions. This is
because nonlinear wave–wave interactions play an important role in the evolution of wind waves,
accounting for nonlinear transfer of wave energy to lower and higher frequencies within the spectrum.
Presently, in almost all operational state-of-the-art wave models, nonlinear transfer due to wave–wave
interactions are evaluated by the discrete interaction approximation (DIA), which was developed by pio-
neering studies led by Hasselmann more than two decades ago. Although many efforts have tried to
develop new methodologies to improve DIA, its basic formulation has not changed. In this study, we pres-
ent a new computational method by evaluating the dominant nonlinear wave transfer along the wave-
number and the wave directional axes, and by approximating the contributions along the resonance
loci. The new method is denoted the Advanced Dominant Interaction (AvDI) method. We show that AvDI
is sufficiently efficient that it can be implemented within an operational wave model. As a validation of
the approach, we compare simulations of hurricane Juan with observed wave data.
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1. Introduction

In recent years, the simulation and forecasting of intense
cyclones and their associated maximum waves have become
important issues in coastal ocean waters, due to the increased pop-
ulation living in these areas and the increase in potential damage
to human development and societal infrastructure. Large, complex
ocean waves can be generated by marine storms and their rapidly-
varying winds and they can propagate thousands of kilometers
from their generation centers to coastal areas. An accurate efficient
computation of nonlinear wave–wave interactions is an important
key to getting reliable wave forecasts.

While numerical modeling has made impressive steps in fore-
casting waves on global and regional scales and considerable
efforts have been made to accurately simulate and measure direc-
tional wave spectra generated by marine storms, progress in the
development of operational algorithms for evaluating the nonlin-
ear wave–wave interactions has not been as rapid. Almost all mod-
ern operational wave models implemented on large-scale lakes
and oceans use the discrete interaction approximation (DIA) for-
mulation given by Hasselmann and Hasselmann (1985) and WAM-
DI (1988).

This paper presents a new method to compute the nonlinear
wave–wave interactions. The new method is based on the
Webb–Resio–Tracy algorithm (hereafter WRT), which has been de-
scribed by Webb (1978), Tracy and Resio (1982), Resio and Perrie
(1991, 2008) and Van Vledder (2006). The WRT method uses scal-
ing similarities to reduce the number of computations and thereby
speed up the overall computation. We suggest that this new meth-
od is a potential candidate for further development and application
in operational wave forecast models.

We start with the well-known action N(f, h) balance equation for
wind-generated waves (Komen et al., 1994). In terms of wavenum-
ber and direction, the action density may be written as N(k, h, /, k)
and the conservation equation is generally expressed as,
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where / is latitude, k is longitude, h is the direction of wave prop-
agation, s is a coordinate parallel to h and m is a coordinate perpen-
dicular to h, r is the angular frequency, R is the radius of the earth,
and U/,k is the ocean current component in / and k directions,
respectively.

On the right side of Eq. (1), S is the net source term consisting of
wind input (Sin), nonlinear quadruplet wave–wave interactions
(Snl), wave-breaking dissipation (Sds) and bottom friction (Sbot).
The nonlinear interactions (Snl) are important because they distrib-
ute spectral energy to higher and lower frequencies, and direction-
ally within the spectrum. In this paper, we focus on the nonlinear
wave–wave interactions (Snl), which are conservative, neither cre-
ating nor dissipating energy.

In a pioneering study, Hasselmann (1962) derived an analytic
expression for Snl, which is often referred to as the Boltzmann inte-
gral or kinetic equation. Some time later, Hasselmann and Hassel-
mann (1981) presented the Exact-NL formulation to numerically
estimate Snl. This method was the first systematic algorithm for
this problem. However, this approach is too time-consuming for
operational wave forecasting. Therefore, several years later Hassel-
mann et al. (1985) developed the Discrete Interaction Approxima-
tion (DIA), with dramatically increased computational efficiency
compared to Exact-NL. The development of DIA allowed the formu-
lation of third-generation wave prediction models, such as WAM,
WAVEWATCHIII and SWAN. However, DIA has a number of well-
known shortcomings and for many types of spectra compares
poorly with a full evaluation of Snl (Van Vledder, 2001; Resio and
Perrie, 2008; Perrie and Resio, 2009).

In recent years, several attempts have been made to formulate a
more efficient, accurate parameterization for Snl by incrementally
simplifying the ‘‘exact” WRT method. Lin and Perrie (1999) sug-
gested a reduced integration approach. Several studies have tried
to move beyond the basic DIA approach, expanding DIA, or using
multiple representative quadruplets (Krasnopolsky et al., 2002;
Tolman and Krasnopolsky, 2004; Tolman et al., 2005; Van Vledder,
2001, 2006; Tolman, 2004; Hashimoto and Kawaguchi, 2001). Re-
cently, a two-scale approximation to wave–wave interactions has
been suggested by Resio and Perrie (2008) and Perrie and Resio
(2009).

Motivated by Tracy and Resio (1982), Susilo and Perrie (2007)
developed an algorithm that estimates a scaling factor to evaluate
the nonlinear transfer, based on the largest contributions, or dom-
inant contributions, to Snl along the mean wave direction. This
method achieves a reduction in computational time by selecting
sets of interacting wavenumbers that produce the dominant trans-
fers so that it is not necessary to compute the integral for the entire
spectrum. However, the method needs additional optimization be-
fore it can be applied for operational forecast models.

In this study, a modern operational third-generation spectral
wave model is used to test the new AvDI formulation for nonlinear
wave–wave interactions, WAVEWATCH III (hereafter WW3) version
1.18 (Tolman, 1999, 2002). WW3 includes numerical and physical
parameterizations that make it suitable for a large range of scales
including global, ocean-basin scale, shelf scales, and high-resolution
coastal ocean regions. We first present a theoretical development of
the AvDI method in Section 2, based on the WRT methodology. As a
practical demonstration, AvDI is implemented in WW3 in Section 3.
Results from numerical experiments, involving both JONSWAP wave
observations and a real storm case are described in Section 4. Tests
involving storm-generated waves are important because parame-
terizations for Snl have sometimes been found to perform much bet-
ter for JONSWAP spectra than for evolutionary storm cases (Tolman,
2004). In this study, the storm is hurricane Juan which made landfall
in Halifax, Nova Scotia on September 29, 2003 as a category two hur-
ricane. Model validation is based on wave buoy observations. Con-
clusions are given in Section 5.

2. Theoretical and numerical development

The basic equation describing the nonlinear quadruplet wave–
wave interactions (Hasselmann, 1962; Zakharov and Filonenko,
1966) is known as the full Boltzmann integral (FBI). This relation
gives the rate of change of action density Snl, due to all resonant
interactions among quadruplets of wave numbers. It may be ex-
pressed as
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and where N1 is the action density at wave number k1. Webb (1978)
expressed this equation in terms of a transfer function T(k1, k3)
where
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Here, xi is the angular frequency at ki, d(. . .) is the Dirac delta func-
tion, C2 is the coupling coefficient (Webb, 1978; Tracy and Resio,
1982) and H is the Heaviside function,

HðxÞ ¼ 1 if x > 0
HðxÞ ¼ 1 if x 6 0
x ¼ jk1 � k4j � jk1 � k3j: ð7Þ

Applying the resonance conditions x1 + x2 = x3 + x4 and k1 + k2 =
k3 + k4, Tracy and Resio (1982) and Resio and Perrie (1991) restated
the transfer integral (Eq. (6)) as
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which is a contour integral. Here, W ¼ x1 þx2 þx3 þx4, the fre-
quency resonance condition is W = 0, unit vector s is along the inter-
action locus, and unit vector n is normal to that locus. In terms of a
density function D(N) and a geometry function G(k), Eq. (8) may be
written as
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In evaluating the full Boltzmann integral, Eq. (5) may be expressed
as
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where it is important to include all contributions from the entire
domain of the wave spectra including all possible resonance
combinations satisfying the interaction loci. If there are i frequency
bins, j angle bins and l loci bins, the integral requires i � j � l calcu-
lations to compute dN1/dt, compared to DIA which requires i � j
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