
Alternating zonal jets and energy fluxes in barotropic wind-driven gyres

B.T. Nadiga a,*, D.N. Straub b

a Los Alamos National Lab., MS-B296, Los Alamos, NM 87545, United States
b McGill Univ., Burnside Hall 819, 805 Sherbrooke West Montreal, Que., Canada H3A 2K6

a r t i c l e i n f o

Article history:
Received 27 October 2009
Received in revised form 7 January 2010
Accepted 20 February 2010
Available online 10 March 2010

Keywords:
Ocean circulation
Alternating zonal jets
Wind-driven circulation
Energy flux

a b s t r a c t

The barotropic b-plane vorticity equation is considered under steady large scale (double-gyre) and small
scale (stochastic) forcing. For both forcings, regimes are found in which alternating zonal jets appear. For
steady large scale forcing, this regime is characterized by weak forcing and weak dissipation. Attention is
focused on energy cascades due to the nonlinear and b terms and the jets are found to be associated with
to a near compensation in these cascades over a range of wavenumbers. Additionally, interaction
between flow forced at large scale and flow forced at small scale is examined.

Published by Elsevier Ltd.

1. Introduction

Recent evidence has unmasked the presence of alternating
zonal jet-like features superimposed on the larger scale mid-
latitude oceanic gyre circulation (Treguier et al., 2003; Nakano
and Hasumi, 2005; Maximenko et al., 2005; Richards et al., 2006;
Maximenko et al., 2008). While the exact mechanism underlying
the formation of these features is still not well understood, a num-
ber of possible mechanisms have been suggested. For example,
alternating jets are well-known from b-plane turbulence and are
associated with a halting of the two-dimensional inverse energy
cascade by Rossby wave dispersion (e.g., Rhines, 1975; Vallis and
Maltrud, 1993; Panetta, 1993) . Thus, it is possible that the recently
observed features are consistent with the classic picture of ocean
energetics whereby barotropization of mesoscale eddies acts as
an effective small scale energy source for the barotropic flow
(e.g., Salmon, 1998; Vallis, 2006). A subsequent inverse energy
cascade to the Rhines scale would then produce the jets.

However, the reflection of long Rossby waves as short Rossby
waves at a western boundary and the attendant inviscid genera-
tion of anisotropy can lead to dynamics that are different from
those in the zonally periodic setting. For example, in the case with
meridional boundaries, a linear forward cascade of energy, associ-
ated with the b term, is possible, whereas that is not the case in a
periodic setting. Nevertheless, idealized numerical studies (Kramer
et al., 2006; Nadiga, 2006) in a closed basin suggest that the anisot-

ropization-of-inverse-cascade mechanism can survive in the pres-
ence of meridional boundaries, as is relevant for the oceanic
context. Other suggestions for the formation of oceanic jets include
nonlinear self-interactions of linear eigenmodes (Berloff, 2005;
Berloff et al., 2009) and that such jets are preferred growing struc-
tures excited by the imposed stochastic forcing (Farrell and Ioan-
nou, 2007). Finally, zonal jets can be formed simply by the
instability of barotropic Rossby waves (Lorenz, 1972; Gill, 1974;
Connaughton et al., in press).

Both the b-plane turbulence and the gyre scale dynamics are
nonlinear and it seems reasonable to anticipate that the two will
interact. A full description of the interactions will clearly necessi-
tate consideration of baroclinic effects; it nonetheless seems useful
to begin by understanding how jets interact with the wind-driven
circulation in the simpler context of the purely barotropic problem.
In this paper, we consider the b-plane barotropic vorticity equation
in a box geometry forced by (i) a steady large scale wind, (ii) a
small scale stochastic forcing and (iii) both. The first case is the
classic mid-latitude double gyre problem. The second has previ-
ously been used to model the jets (Nadiga, 2006; Kramer et al.,
2006). It might be thought of as a crude model of energy being in-
jected by small scale baroclinic eddies into the barotropic mode.
The third allows us to consider interactions between the two. We
focus primarily on a description of the energy cascades.

In Section 2, we describe the model and introduce diagnostics.
Section 3 gives results for the three types of forcing. We first de-
scribe a regime in which jets appear in the barotropic double gyre
problem. The jets are shown to be associated with a near compen-
sation between a (linear) forward energy cascade related to the b
effect in the presence of meridional boundaries and the nonlinear
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inverse cascade familiar from two-dimensional turbulence. Next,
consistent with previous studies, we also find jets to appear in
response to small scale stochastic forcing. Note that in both cases,
the jets are visible only after averaging. In instantaneous snap-
shots, they are masked by the presence of a stronger isotropic eddy
field. Finally, interaction between flow forced at small and large
scale is considered. A discussion in Section 4 is then followed a
brief summary in Section 5.

2. Model, diagnostics and background

2.1. Equations, parameters and diagnostics

We solve the barotropic quasigeostrophic potential vorticity
equation:

@q
@t
¼ �Jðw; qÞ þ F � rr2wþ Ar8w

q ¼ r2wþ by
ð2:1Þ

The model domain is taken to be a square box of width 2pL. Forcing,
F, includes a large scale wind forcing F large ¼ F0 sinðy=LÞ and a small
scale stochastic forcing, Fsmall. Fsmall injects energy at a average rate,
�, into a narrow ring of wavenumbers centered on a large wave-
number, kf . This forcing is stochastic in time spatially homogeneous
and present in a narrow ring of wavenumbers centered around a kf

of 128. Time dependence in Fsmall is given by an Ornstein–Uhlen-
beck process. The decorrelation time corresponds to about 4% of
an estimate of the turnover time, L=Urms. A consequence of this
choice is that � is not known a priori, but must be measured. We
have conducted a few of the stochastically forced simulations with
white noise forcing instead of the colored forcing and verified that
our results remain the same. At lateral boundaries, a generalization
of slip conditions appropriate for hyperviscosity is applied. Specifi-
cally, we set r2w ¼ r4w ¼ r6w ¼ 0. With this choice, boundary
terms that might otherwise appear in the energy equation are
eliminated.

An equation for the domain-averaged energy, E, is found by
multiplying (2.1) by w and averaging over the domain:

dE
dt
¼ Forcing� 2rE� A

4p2L2

Z Z
ðr4wÞ2dxdy: ð2:2Þ

Here, the forcing term is the sum of the energy injection rate due to
the small scale stochastic forcing and W, the wind power source. W
is given by

W¼: �1
4p2L2

Z Z
ðwF largeÞdxdy: ð2:3Þ

In the absence of a forward energy cascade to dissipation wave-
numbers, energy dissipation by the hyperviscosity is negligible
and statistical equilibrium implies

2rE ¼ rU2
rms � �þW; ð2:4Þ

where overbars denote time averages.
As mentioned, �must be determined from the solution since the

stochastic forcing used had a finite decorrelation time. Similarly, W
is also a function of the solution; however, one can make a useful a
priori estimate by assuming the large scale flow to be well approx-
imated by the Sverdrup balance:

b
@wSv

@x
¼ F large: ð2:5Þ

This gives

W � F2
0pL
2b

; ð2:6Þ

which is a good approximation, except where damping is weak, in
which case a four gyre response tends to develop and W decreases
(Greatbatch and Nadiga, 2000). Note that (2.4) and (2.6) yield an
estimate for the root mean square (rms) velocity at statistical
equilibrium.

In general, the problem is defined by the dimensional parame-
ters b, L; F0; �; kf ; r and A. The precise value of A is largely irrele-
vant. The main role of hyperviscosity is to damp enstrophy
variance, which cascades forward to high wavenumbers and the
value of A determines the position of a viscous tail in the spectra.
Although bottleneck effects can influence the spectra at wavenum-
bers slightly to the left of the viscous tail (e.g., see Frisch et al.,
2008), for sufficiently high resolution (and low A), the spectra are
insensitive to A over low-to-moderate wavenumbers. We choose
kf ¼ 128, so that k�1

f is small compared to 1 and large compared
to the viscous scale. To limit the size of our parameter space, kf ,
L, A and b will be held fixed.

A range of values for the remaining parameters, r, F0 and � will
be considered. It is convenient to express these non-dimensionally.
Consider first the case with large scale forcing only. It is common in
oceanography to express r and F0 non-dimensionally as (e.g., Ped-
losky, 1996):

ds �
r
bL
; di �

F1=2
0

bL
: ð2:7Þ

Physically, ds and di give the ratio of the linear Stommel layer thick-
ness and an a priori estimate of the inertial boundary layer thickness
to L.1 Note that Ldi can be thought of as a Rhines scale,

di ¼
1
L

USv

b

� �1=2

; ð2:8Þ

where USv ¼ F0=b gives the Sverdrup velocity amplitude. Alterna-
tively, one might wish to consider a Rhines scale based on an esti-
mate of the rms velocity. Taking � ¼ 0 and using (2.4) and (2.6), we
define

dI¼: di
p

2ds

� �1=4

� Urms

bL2

� �1=2

: ð2:9Þ

Loosely speaking, dI might be thought of as giving an estimate of the
energy-containing eddy scales in the gyre problem. In eddying
flows, typically, dI is larger than di.

Given the form of (2.9), it is obvious that the same dI can be
achieved by different combinations of forcing di and dissipation
ds. Moreover, one might anticipate a difference in behavior be-
tween, for example, a case where dI is made large by choosing di

large and one where the same dI is achieved by choosing ds small.
One of our principal findings is that, in the latter case (dissipation
and forcing both small), zonal jets appear super-posed on the dou-
ble gyre circulation. To our knowledge, this is the first time jets
have been produced in a gyre simulation with neither baroclinity
nor small scale forcing.

By analogy with dI , we can also define a similar parameter for
the small scale forcing:

d�¼:
1
L

�
b2r

� �1=4

� Urms

bL2

� �1=2

; ð2:10Þ

where in this case, Urms � ð�=rÞ1=2. For a simulation forced by Fsmall,
one expects an inverse cascade feeding energy into zonal jets with a
characteristic width that scales like d�. This assumes, of course, that
the Rayleigh damping is sufficiently weak so as to allow the inverse
energy cascade to reach the Rhines scale, which will typically be the
case if ds is small compared to d�.

1 Note that Pedlosky’s definition differs from ours by a factor of 2p.
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