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a b s t r a c t

In ocean models that use a mode splitting algorithm for time-stepping the internal- and external-gravity
modes, the external and internal solutions each can be used to provide an estimate of the free surface
height evolution. In models with time-invariant vertical coordinate spacing, it is standard to force the
internal solutions for the free surface height to agree with the external solution by specifying the appro-
priate vertically averaged velocities; because this is a linear problem, it is relatively straightforward.
However, in Lagrangian vertical coordinate ocean models with potentially vanishing layers, nonlinear
discretizations of the continuity equations must be used for each interior layer. This paper discusses
the options for enforcing agreement between the internal and external estimates of the free surface
height, along with the consequences of each choice, and suggests an optimal, essentially exact, approach.

Published by Elsevier Ltd.

1. Introduction

Hydrostatic ocean models filter out sound waves, so the fastest
motions in such models are external gravity waves, propagating
horizontally at

ffiffiffiffiffiffi
gH

p
(where g is the gravitational acceleration

and H is the total ocean depth) – of order 200 ms�1 in the deep
ocean. Shallow-water external gravity waves have nearly vertically
uniform horizontal velocities and are well characterized by two-
dimensional equations. The next fastest motions are horizontal
velocities and internal gravity waves, both with speeds of a few
meters per second and rich three-dimensional structures. Ocean
models are about two orders of magnitude less costly to integrate
in time if they separate integration of the external mode from the
internal evolution of the model.

In models with time-invariant vertical coordinates (sigma- or Z-
coordinate models or their stretched equivalent with a free sur-
face), gravity waves are typically handled with an external mode
solver (using either a rigid lid or a free surface). In either case,
the time-filtered evolution of the free surface height gives a bound-
ary condition on the vertical velocity, which is determined diag-
nostically from the vertically structured continuity equation. The
discretization of the continuity equation in such models is invari-
ably linear in the velocities, and it is straightforward to use a finite

volume formulation and obtain exact consistency between the
time-averaged external mode solution and the internal model
structure. Even when the free surface height does vary modestly
with time (such that no levels ever vanish with a given definition
of the vertical coordinate), the algorithm used is still essentially
the same; most importantly a linear (in velocity) discretization of
the continuity equation is still appropriate, and a finite volume rec-
onciliation of the changes in the interior structure with the evolu-
tion of the free surface (Griffies et al., 2001; Campin et al., 2004).
With this exact finite volume reconciliation, there are no issues
with tracer or mass (volume if Boussinesq) conservation.

By contrast, Lagrangian vertical coordinate models1 use the con-
tinuity equation prognostically to describe the evolution of the
thickness, hk, of each vertically discrete layer k:

@hk

@t
¼ �r � ðukhkÞ: ð1Þ

(For simplicity, vertical fluxes and precipitation minus evaporation
are ignored here – they do not alter the discussion.) The layer thick-
nesses can be summed vertically to obtain an estimate of the free
surface height

gh �
XK

k¼1

hk � D; ð2Þ
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where D is the time-invariant bottom depth.2 The vertical sum of
the layer continuity equations gives the barotropic continuity
equation,

@g
@t
¼ �r �

XK

k¼1

ukhk

 !
¼ �r � ðUHÞ; ð3Þ

which uses the definitions of the total thickness and the barotropic
velocity,

H �
XK

k¼1

hk and U � 1
H

XK

k¼1

ukhk

 !
: ð4Þ

In the horizontally and temporally continuous equations, the two
estimates of the free surface height, g and gh, are perfectly consis-
tent. However, discretization in time or in the horizontal spatial
directions can break the consistency between Eqs. (1) and (3). A
widely used approach to solve Eqs. (1) through (3) for g and gh is
the barotropic–baroclinic split time stepping scheme, in which the
two-dimensional shallow water equations [(3) and the vertically
averaged momentum equations] are used to estimate the evolution
of the free surface height, g, for the time interval Dt, over which the
full three-dimensional equations are also advanced. The two-
dimensional equations can be advanced either explicitly with many
short time steps (e.g. Killworth et al., 1991; Bleck and Smith, 1990;
deSzoeke and Higdon, 1997; Hallberg, 1997; Shchepetkin and
McWilliams, 2005) or implicitly (e.g. Dukowicz and Smith, 1994;
Campin et al., 2004). Both the explicit and implicit approaches
can be represented schematically as

gnþ1 � gn

Dt
¼ �r � hUHi ¼ �r � hVðU;HÞi; ð5Þ

where the angle brackets are used to denote whatever time averag-
ing of velocities and thicknesses are used to determine the volume
fluxes that advance the free surface height over a time step, Dt. The
function V represents the spatial discretization of the barotropic
fluxes, and may be a nonlinear function of U or H. The superscripts
n and n + 1 refer to successive (baroclinic) time levels (there may be
many shorter sub-cycled time levels averaged over by the angle
brackets). The precise meaning of the angle brackets is determined
by the choice of split time stepping scheme. For many split explicit
schemes (e.g., Bleck and Smith, 1990; Killworth et al., 1991; Hall-
berg, 1997; Higdon, 2005) the angle brackets are approximately a
simple time average, while for Shchepetkin and McWilliams
(2005) it would be a weighted filter that extends past time level
n + 1. With an implicit scheme, the angle brackets are likely to be
the values at time level n + 1.

The layer continuity equations are integrated over the same
time period as (5) with a single large time-step, Dt; this is repre-
sented schematically as

hnþ1
k � hn

k

Dt
¼ �r � ðukhkÞ ¼ �r � Fðuk; hkÞ: ð6Þ

The layer thicknesses, hk, must be non-negative, which generally re-
quires the use in (6) of a discretization (here represented as the
function F) of the horizontal volume fluxes (ukhk) that depends non-
linearly on the velocities, inevitably reverting to upwind differenc-
ing for sufficiently strong flow out of a relatively thin cell. For the
discrete (in time and space) equations to have a consistent (single)
estimate of the free surface height, the time average barotropic

fluxes, hVi, and vertically integrated baroclinic fluxes,
P

F , must
satisfy

hVðU;HÞi ¼
XK

k¼1

Fðuk;hkÞ: ð7Þ

Failure to satisfy this constraint implies the existence of two esti-
mates of the free surface and a possible inconsistency in the model
equations. Satisfying this constraint is non-trivial due to the non-lo-
cal in time and space nature of the constraint, and is especially non-
trivial when either of V or F are non-linear.

The accumulated horizontal volume fluxes used to update the
free surface height, hU Hi, can be related to an effective time-mean
barotropic velocity by

hUi ¼ hUHi
hHi ¼

hVðU;HÞi
hHi ; ð8Þ

where hHi is an appropriate time-mean total thickness. hUi is com-
monly used in strategies to reconcile Eqs. (5) and (6).

At this point the layer equations could be advanced with a
velocity whose thickness weighted vertical mean has been re-
placed by the time-mean barotropic velocity, hUi. Replacing the
instantaneous vertically averaged velocity,

U0 �
PK

k¼1
~hkukPK

k¼1
~hk

; ð9Þ

by the time-mean barotropic velocity gives new layer velocities of

u
_

k ¼ uk þ hUi �
PK

j¼1
~hjujPK

j¼1
~hj

¼ uk þ hUi � U0; ð10Þ

whose vertical average matches the time-mean barotropic velocity.
Here the ~hk are estimates of the thicknesses at the faces of the con-
trol volumes, but except in the linear limit, ~hk cannot be guaranteed
to agree with the effective thicknesses from the continuity equa-
tion, defined by h

_

k � n̂ � F u
_

k;hk

� �
= n̂ � u

_

k

� �
, where n̂ is the unit vec-

tor normal to the faces of the control volume. (In one-dimension, h
_

k

is just the volume flux divided by the velocity.) Eq. (10) alters the
vertical mean velocity, but deviations from this mean

u0k ¼ uk � U0; ð11Þ

are unaffected by this adjustment. With the adjustment in (10), an
estimate of the layer time-filtered thicknesses can be advanced by

hnþ1
k ¼ hn

k � Dtr � F u
_

k;hk

� �
¼ hn

k � Dtr � u
_

k h
_

k

� �
: ð12Þ

Like the definition of the averaging in the angle brackets, the timing
of the layer velocities in (10) and of the thicknesses used for the
fluxes in (12) are determined by the underlying baroclinic time-
stepping scheme. If a predictor-corrector scheme is used (as in
the examples in Section 3), mass conservation only requires that
the final correction to the layer thicknesses be consistent with
(12), although it is often useful for the overall stability of the
scheme if similar constraints to be applied to the predictor steps
as well (Higdon, 2008).

In the limit where the volume fluxes vary linearly with the
velocities, it is possible to select the discretizations of the fluxes
and the thickness weights such that

~hk ¼ h
_

k ¼ hk
x and hHi ¼

XK

k¼1

hk
x; ð13Þ

where the overbar-x represents the arithmetic mean of adjacent
thicknesses (or any other plausible interpolation of the thicknesses
to the velocity points that is independent of the velocity). So in the
linear limit, summing (12) over the layers and subtracting the bot-
tom depth, D, combined with (10) and (13) and the identity

2 The discussion presented here makes the Boussinesq approximation. Without it
the thicknesses would be measured in units of Pascals instead of meters, the roles of
the bottom depth and sea surface height are replaced by surface and bottom pressure,
and volume conservation becomes mass conservation. The discussion presented here
would be identical without the Boussinesq approximation if this change of variables
were made.
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