
A tale of two elements: PNC
1 � P1 and RT0

Emmanuel Hanert a,*, Roy A. Walters b, Daniel Y. Le Roux c, Julie D. Pietrzak d

a Department of Meteorology, The University of Reading, Earley Gate, P.O. Box 243, Reading RG6 6BB, UK
b 6051 Hunt Road, Victoria, BC, V8Y 3H7, Canada
c Département de Mathématiques et de Statistique, Université Laval, Québec, QC, G1K 7P4, Canada
d Faculteit CiTG, TU Delft, Stevinweg 1, 2628 CN Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 23 April 2008
Received in revised form 13 June 2008
Accepted 9 July 2008
Available online 25 July 2008

Keywords:
Shallow water equations
Finite element method
Propagation factor
Consistency

a b s t r a c t

The PNC
1 � P1 and RT0 finite element schemes are among the most promising low order elements for use in

unstructured mesh marine and lake models. They are both free of spurious elevation modes, have good
dispersive properties and have a relatively low computational cost. In this paper, we derive both finite
element schemes in the same unified framework and discuss their respective qualities in terms of con-
servation, consistency, propagation factor and convergence rate. We also highlight the impact that the
local variables placement can have on the model solution. The main conclusion that we can draw is that
the choice between elements is highly application dependent. We suggest that the PNC

1 � P1 element is
better suited to purely hydrodynamical applications while the RT0 element might perform better for
hydrological applications that require scalar transport calculations.

Crown Copyright � 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the last 10 years, there has been an on-going effort to develop
a new generation of marine models using unstructured rather than
structured meshes. Several numerical methods have been investi-
gated such as the finite element (FE), finite volume and spectral
element methods. Among these three families of numerical meth-
ods, the FE method is the more general as the finite volume and
spectral element methods can be seen as discontinuous and high
order FE methods, respectively.

The late application of the finite element method to simulate
marine flows is partly due to the issue of computational pressure
modes, which were found to be present in most of the initial FE
models and rendered them inaccurate (Walters and Carey, 1983;
Walters, 1983; Walters and Carey, 1984). The approach originally
proposed to avoid these modes was to use a modified form of
the governing equation that does not support them. This method,
called the wave equation method (Lynch and Gray, 1979), allows
to use simple low order elements and accurately solves non-dis-
persive wave propagation problems. However, the wave equation
formulation appears to be subject to advective instabilities and
presents mass conservation issues (Kolar et al., 1994; Massey and
Blain, 2006). The shortcomings of the wave equation formulation
therefore lead to more research on finite element pairs to solve

the primitive equations without having recourse to modified for-
mulations or stabilization. Among the family of low order FE pairs,
the PNC

1 � P1 and RT0 elements have appeared to have most of the
desired qualities, i.e., absence of spurious modes, simplicity and
good dispersive properties.

The lowest order Raviart–Thomas element (Raviart and
Thomas, 1977), RT0, tries to mimic the finite difference C-grid. Like
the C-grid, the RT0 element has spurious f-modes in the velocity
but no spurious elevation modes (Raviart and Thomas, 1977; Han-
ert et al., 2003; Le Roux et al., 2007). However, there is usually no
significant development of these modes so they are not an issue as
long as the Rossby deformation radius is well resolved. The RT0 FE
scheme has been used in the unstructured mesh models developed
by Walters and Casulli (1998) and Miglio et al. (1999). Other mod-
els based on a finite volume or finite difference formalism but
using the same variables placement as the RT0 element have also
been developed (Casulli and Walters, 2000; Chen et al., 2003;
Ham et al., 2005; Walters, 2005; Fringer et al., 2006; Stuhne and
Peltier, 2006). The success of RT0 is partly due to its formulation
that has similarities with finite volumes although it is not a finite
volume scheme.

The linear non-conforming, conforming element, PNC
1 � P1, does

not really have an equivalent Arakawa-type finite difference grid
but has some similarities with the CD-grid of Adcroft et al.
(1999) with the exception that the elevation lies on the vertices
rather than at the center of the elements (Le Roux, 2005). The
PNC

1 � P1 has first been used by Hua and Thomasset (1984) to solve
the shallow-water equations but then laid dormant for about 20
years before it was analysed by Le Roux (2005) and used by Hanert
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et al. (2005) to solve the non-linear shallow water equations. The
PNC

1 � P1 element has since then been used in unstructured mesh
models developed by Greenberg et al. (2007), Sobolev et al.
(2007), White et al. (2008a) and Lambrechts et al. (2008).

Although further developments should certainly be expected in
the future, especially among fully discontinuous low and high or-
der elements (Bernard et al., 2007; Giraldo and Warburton,
2008), here we present both FE pairs within an unified framework.
This is the first time such a comparison has been made and it al-
lows us to highlight their differences and similarities. In turn this
allows us to make some recommendations regarding their domain
of applicability. Given the widespread interest in this class of FE
methods we believe this is of broad interest to not only the ocean
modelling community but also to the limnology community as
well. Both communities are actively developing these types of
numerical solution techniques.

As usual for such comparative studies, we take the shallow
water equations model as a benchmark problem. After having de-
rived the discrete formulations for both elements in Section 2, we
shall discuss their respective qualities by considering their propa-
gation factors (Section 3), conservation properties (Section 4),
convergence rates (Section 5) and the effects of different approxi-
mations (section 6). We conclude with recommendations concern-
ing the types of problems for which they are best suited.

2. Formulation

The model equations are the two-dimensional shallow water
equations. These equations are derived by vertically integrating
the Reynolds-averaged Navier–Stokes equations and using the
hydrostatic assumption and the Boussinesq approximation. The
continuity and momentum equations are

og
ot
þ $ � ðHuÞ ¼ 0; ð1Þ

Du
Dt
þ f ez � uþ g$gþD�T ¼ 0; ð2Þ

where u(x, t) is the depth-averaged horizontal velocity with compo-
nents (u,v), f is the Coriolis parameter, ez is the upward unit vector,
g is the gravitational acceleration, H = h + g is the total water depth,
h(x) is the water depth measured from a reference elevation, g(x, t)
is the distance from the reference elevation to the free surface, D
and T are dissipation and forcing terms, x = (x,y) is the horizontal
coordinate, D

Dt ¼ o
ot þ u � $ is the material derivative and $ ¼ o

ox ;
o
oy

� �
is the horizontal gradient.

No-normal flow boundary conditions are imposed on the
boundary of the domain X (u � n = 0 on oX, where n is the unit nor-
mal vector), which is assumed to be closed. Depending on the order
of the dissipation term, some additional boundary conditions
might be needed. These do generally not pose a problem and we
will assume that the no-normal flow boundary condition is suffi-
cient to find a unique solution. In the first part of the paper, we
are going to use only the linearised shallow water equations, i.e.,
the elevation is neglected in front of the water depth in the conti-
nuity equation (H = h) and advection is neglected in the momen-
tum equation. We shall only use the non-linear equations in
Section 6.

2.1. Weak formulations

In order to obtain the finite element discretization of the linear-
ised version of Eqs. (1) and (2), we first have to derive their weak
formulation on the computational domain X. The latter is obtained
by multiplying Eq. (1) and (2) by test functions ĝ and û and then
integrating on X:

Z
X

og
ot

ĝdXþ
Z

X
$ � ðhuÞĝdX ¼ 0; ð3ÞZ

X

ou
ot
� ûdXþ

Z
X

f ðez � uÞ � ûdXþ g
Z

X
$g � ûdX

þ
Z

X
ðD�TÞ � ûdX ¼ 0; ð4Þ

8ĝ 2H and 8û 2 U, where H and U are functional spaces defined
later. In order to only have space derivatives of functions in H or in
U, we may integrate by parts either the divergence or the gradient
term. Hence we respectively obtain the following weak
formulations:

ð5Þ

and

ð6Þ

where h:i ¼
R

X :dX and � :�¼
R

oX :dC. It should be noted that the
impermeability boundary conditions can be naturally incorporated
in formulation (5) by setting the boundary integral to zero. With
that formulation, it is possible to select a functional space U con-
taining only functions that either satisfy the boundary conditions
or not. In other words, we can decide to impose the no-normal flow
constraint only in a weak way (as typically natural boundary condi-
tions are imposed in second order problems) or in the usual strong
way thanks to an additional constraint on the functional space
(Hanert and Legat, 2006).

Formulations (5) and (6) have been obtained from the model Eqs.
(1) and (2) without making any assumptions about the numerical
schemes that will be used to solve these equations. The solution to
formulation (5) belongs to the functional spaces H ¼ H1ðXÞ and
U ¼ ðL2ðXÞÞ2 while the solution to formulation (6) belongs to
H ¼ L2ðXÞ and U ¼ Hðdiv; XÞ � fvjv 2 ðL2ðXÞÞ2 and $ � v 2 L2ðXÞg.

2.2. Finite element discretizations

A finite element approximation to the exact solution of Eqs. (1)
and (2) is found by replacing g and u by finite element approxima-
tions gh and uh in formulation (5) or (6). Those approximations
respectively belong to finite dimensional spaces Hh �H and
Uh � U. They read

g 	 gh ¼
XM

i¼1

gi/i;

u 	 uh ¼
XN

j¼1

ujwj or
XN

j¼1

Jjsj;

E. Hanert et al. / Ocean Modelling 28 (2009) 24–33 25



Download	English	Version:

https://daneshyari.com/en/article/4552615

Download	Persian	Version:

https://daneshyari.com/article/4552615

Daneshyari.com

https://daneshyari.com/en/article/4552615
https://daneshyari.com/article/4552615
https://daneshyari.com/

