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Realistic numerical simulations of nonlinear internal waves (NLIWs) have been hampered by the need to
use computationally expensive nonhydrostatic models. In this paper, we show that the solution to the
elliptic problem arising from the incompressibility condition can be successfully approximated by a
few terms (three at most) of an expansion in powers of the ratio (horizontal grid spacing)/(total depth).
For an n dimensional problem, each term in the expansion is the sum of a function that satisfies a
one-dimensional second-order ODE in the vertical direction plus, depending on the surface boundary
condition, the solution to an n — 1 dimension elliptic problem, an evident saving over having to solve
the original n-dimensional elliptic problem. This approximation provides the physically correct amount
of dispersion necessary to counteract the nonlinear steepening tendency of NLIWs. Experiments with dif-
ferent types of NLIWs validate the approach. Unlike other methods, no ad hoc artificial dispersion needs
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to be introduced.
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1. Introduction

Nonlinear internal waves (NLIWs) have emerged in the past
30 years as a prominent feature of many shelf and coastal areas
around the world. For a comprehensive catalog of observations,
the reader is referred to Jackson (2004). In addition to being
an interesting problem in itself, NLIWs impact several areas of
coastal oceanography through enhanced mixing and transport
(MacKinnon and Gregg, 2003; Leichter et al., 2003; Moum et
al.,, 2003), biological oceanography by redistributing plankton
(Pineda, 1999; Helfrich and Pineda, 2003; Scotti and Pineda,
2007), and geological oceanography by suspending and trans-
porting sediments (Bogucki et al., 1997; Butman et al., 2006).
For this reason, much research has been devoted to modeling
NLIWSs (Helfrich and Melville, 2006). Though reliable quantitative
observations of NLIWs were available since the late 1960s
(Ziegenbein, 1969; Halpern, 1971) they attracted serious consid-
eration in the early 1980s (Osborne and Burch, 1980), when it
was recognized that weakly nonlinear wave theory could be
used to frame the problem (Benney, 1966; Liu and Benney,
1981). The assumption was that, properly normalized, the ampli-
tude o and steepness B of these waves could be treated as small
parameters in a series expansion. To the lowest nontrivial order
this leads to the Korteweg-de Vries (KdV) equation (Korteweg
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and de Vries, 1895) for the amplitude of the waves.! The princi-
pal insight of KdV theory is that the steepening tendency of non-
linearity is balanced by the dispersive nature of the medium in
which the waves propagate. This allows finite amplitude waves
of special shape to propagate without distorsion. While attractive
for its elegance and simplicity, KdV theory suffers from many
shortcomings, which limit its usefulness as a predictive tool. It
is well known that NLIWs in the ocean are often highly nonlinear,
quite steep and have trapped cores (Stanton and Ostrovsky, 1998;
Klymak and Moum, 2003; Scotti and Pineda, 2004); during gener-
ation and shoaling, topography couples modes, whereas KdV
neglects mode-mode interaction and cannot handle steep topogra-
phy; over long propagation times, rotation is important (Helfrich,
2007); three-dimensional effects can only be incorporated assum-
ing weak dependence on the direction normal to the propagation;
dissipation and instabilities require ad hoc treatment. While some
of these concerns can be addressed within the KdV framework
(Grimshaw and Smyth, 1986; Grimshaw et al.,, 1999; Smyth and
Holloway, 1988; Holloway et al., 1997; Holloway et al., 1999),
the fundamental limitations of the weakly nonlinear framework
cannot be escaped. For this reason, newer models have been intro-

" In the two-layer approximation, the amplitude is the displacement of the
interface separating the two layers; for a continuous stratification, waves are
projected onto the normal modes of the linear problem, and KdV describes the
evolution of the amplitude of a particular mode, in a frame of reference traveling with
the linear phase speed of the mode.
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duced, which typically remove the weakly-nonlinear constraint.
The prototype is the (Choi and Camassa (1999)) model. This is a
two-layer model, fully nonlinear but still dependent on the steep-
ness of the waves to be small. It can be generalized to multiple
layers, and can handle smooth topography, but it is not free from
issues. For example, any amount of shear between layers, however
small, will trigger Kelvin-Helmholtz instabilities that need to be
filtered out. At the opposite end of the complexity scale we have
the well established general circulation models (GCMs). Robust,
well documented, with an extensive set of tools to address biolog-
ical and geophysical problems, they have been used to address a
wide range of problems. From an operational point of view, they
would be the tool of choice to study NLIWs. Unfortunately, they
have traditionally taken advantage of the hydrostatic approxima-
tion to reduce the computational load, and thus cannot provide
the dispersion needed to counteract nonlinearity. Newer models,
such as SUNTANS (Fringer et al., 2006) or the MITgcm model
(Marshall et al., 1997) have been developed that do not make
the hydrostatic approximation, and have been used to study
NLIWSs in realistic settings. However, despite the increase in com-
putational power in the last decade, running these models for
realistic problems is still extremely expensive. Not surprisingly,
for these runs a significant fraction of the cost (as high as 60%,
Fringer, personal comm.) is taken up by the solution of the
three-dimensional elliptic problem associated to the incompress-
ibility condition. This limits severely the resolution that can be
achieved, and thus casts reasonable doubts on the predicted char-
acteristics of NLIWs.

In this paper, we show that it is possible to relax the nonhy-
drostatic constraint so that a (suitably modified) nonhydrostatic
model such as SUNTANS could be run to realistically simulate
NLIWs without incurring the full cost of the nonhydrostatic case.
The main objective is to introduce the appropriate amount dis-
persion in a controlled way, with tools that are available to a
nonhydrostatic ocean model, while keeping the numerical over-
head at a minimum. The method is based on a perturbative ap-
proach to the elliptic problem, inspired by how the theoretical
models are derived. The crucial insight however is to recognize
that the critical length scale upon which to base the expansion
is not the physical length scales of NLIWs, but the numerical
horizontal length scale of the grid. This idea may sound foreign
to a mind accustomed to consider theoretical models as contin-
uum objects which may eventually be solved numerically (if
everything else fails). However, it is the natural way to approach
the problem if we subscribe to the view that a GCM is a discrete
numerical tool which tries to model a continuum system (the
ocean).

Of course, it would be desirable to implement a similar strategy
using a hydrostatic model as a starting point. As it will become
clear during the foregoing discussion, this can be done rather easily
if the hydrostatic model makes the rigid-lid approximation. If,
however, the model uses a free-surface, application of the method
described in this paper is not straightforward. Appendix A dis-
cusses some of the issues at stake. However, for the free-surface
case none of them is satisfactory; a complete analysis is beyond
the scope of this paper.

2. Analysis

The hydrostatic approximation is often introduced on dynami-
cal grounds (see, e.g. Haidvogel and Beckmann, 1999, p. 21)
whereas in fact, as will be shown below, it follows from a combina-
tion of kinematic and geometric constraints. Flows that occur on a
horizontal scale L much larger than the local depth H are hydro-
static even in a microgravity environment. Conversely, it is wrong
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Fig. 1. Properties of solitary waves which are solutions of the DJL equation. (a)
Maximum slope of isopycnals as a function of nondimensional wave amplitude. (b)
Width of the waves.

to treat as hydrostatic flows with scales L ~ H.2 The issue with
NLIWs is that their horizontal length scale is typically O(H). Fig. 1
shows the width and maximum isopycnal slope of steady solitary
waves generated with the Dubreil-Jacotin-Long (DJL) equation
(Dubreil-Jacotin, 1937; Long, 1953) vs. wave amplitude #,. To gener-
ate a wave, a solution of the DJL equation is obtained for a given total
available potential energy (APE) (Scotti et al., 2006) using the tech-
nique described in Lamb and Wan (1998). For small APE values,
the width L, of the wave follows the KdV scaling Ly = O(11,'/?).
For the particular stratification considered here (standard hyperbolic
tangent pycnocline), the width bottoms out at #,/H ~ .2 (i.e. when
amplitude matches the depth of the pycnocline), after which it be-
gins to grow, as the solution approaches the conjugate state (Lamb
and Wan, 1998). As the APE increases, the amplitude 7, saturates
as well, as can be seen from the flattening of the maximum slope
curve. In other words, the depth of the pycnocline limits the ampli-
tude of the waves. From a numerical point of view, these results sug-
gest that an adequate horizontal resolution is O(H/10), which is
confirmed by numerical experiments (Scotti et al., 2007). On these
scales, the hydrostatic approximation breaks down, and seems to
imply that a correct simulation requires the use of a nonhydrostatic
code. In the following, we show that this approach is overly conser-
vative. It is possible to relax the nonhydrostatic condition while still
having the correct dispersive behavior on the scales relevant to
NLIWs propagation.

2.1. Solution method

Within an Euler solver, the incompressibility condition slaves
the pressure to the instantaneous velocity and buoyancy field via
an elliptic operator, the price paid for having filtered out the fast
acoustical modes. Numerically, this means that we have to deal
at some point with a Poisson problem, which for a generic curvilin-
ear coordinate system, takes the form (Aris, 1989, p. 169-170)

a(Jg"0) = di(Ju”). M)

The unknown ¢ can be the pressure or the potential in a projection
scheme, but could also be the geopotential in a pressure coordinates

2 This observation is of course not new, for example it is briefly hinted in Pedlosky
(1986, p. 61).



Download English Version:

https://daneshyari.com/en/article/4552650

Download Persian Version:

https://daneshyari.com/article/4552650

Daneshyari.com


https://daneshyari.com/en/article/4552650
https://daneshyari.com/article/4552650
https://daneshyari.com

