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a b s t r a c t

A method to model ocean ecosystems using data-constrained physical circulation estimates is investigated.
Physical oceanographic data is assimilated into a Regional Ocean Modeling System implementation of the
California Current System using an incremental 4-Dimensional Variational method. The resulting state esti-
mate drives a complex, self-assembling ocean ecosystem model for the year 2003, and results are evaluated
against SeaWiFS surface and CalCOFI subsurface observations and with ecosystem model output driven by
an unconstrained physical model. While physical data assimilation improves correlation with observations,
this method also drives elevated levels of phytoplankton standing stock, leading to a large bias particularly
in regions of low mean concentration. We identify two causes for this increase: biological rectification of
fluctuating vertical nutrient transport due to gravity wave generation at assimilation cycle initialization
and increased nutrient variance on density surfaces. We investigate one and propose other possible reme-
dies for these deleterious side-effects of this data assimilation method.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

One major development in oceanography over the last decade
has been the practical realization of ocean observing systems that
serve a multitude of uses such as monitoring upper ocean heat
content at a global scale and improving coastal search and rescue
operations in regional applications (Dexter and Summerhayes,
2010). Data collected from a wide variety of platforms, including
satellites, drifters, moorings and HF RADAR sites, are made avail-
able to the public in near-realtime (see, for example, http://
www.nodc.noaa.gov/access/). Such information also is assimilated
routinely into oceanographic models to produce estimates of ocean
variables that sensibly interpolate and extrapolate sparse data in
space and time. Data assimilation methods for physical variables
in the ocean are quite advanced today, and most ocean state esti-
mates result from assimilation of physical data into ocean circula-
tion models (Behringer and Xue, 2004). Accompanying these
successes is an increasing interest in complementary biogeochem-
ical information to support, for example, monitoring and manage-
ment of hypoxia, harmful algal blooms, and marine fisheries
(Jannasch et al., 2008).

Though less mature than its physical counterpart, data assimila-
tion efforts for ocean ecosystem models also have been actively
developed. Goals generally fall into two categories: estimation
of otherwise poorly known biological model parameters
(e.g., Matear, 1995; Lawson et al., 1995; Friedrichs, 2002;
McGillicuddy et al., 1998a) and production of ocean ecosystem
state estimates (e.g., Ishizaka, 1990; Natvik and Evensen, 2003).
Reviews of biological data assimilation activities can be found in
Gregg (2008) and Edwards et al. (2015). To date, these investiga-
tions have focused primarily on the assimilation of biological or
chemical data into biogeochemical models. A more comprehensive
approach involves the joint assimilation of physical and biological
data into coupled physical and biological models (Song et al., 2012;
Shulman et al., 2013). These methods are relatively complex and
challenging, and their continuing development encourages consid-
eration of alternate approaches to estimate ecosystem fields. One
obvious and relatively simple strategy is to drive biogeochemical
models with physical circulation and mixing estimates that have
themselves been produced by physical data assimilation. This
approach is attractive since physical ocean state estimates pres-
ently exist within many ocean observing systems and reanalyses,
and it is reasonable at first consideration to expect that physical
circulations, when already constrained by data, should result in
improved ecosystem estimates.

A few of studies have tested this idea in the North Atlantic.
Oschlies and Garçon (1999) assimilated remotely sensed sea
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surface height data into a coarse resolution model. While they
found that greater mesoscale activity resulting from assimilation
increased nutrient supply to the subtropical ocean, the resulting
increase in primary production was not sufficient to match inde-
pendent estimates. Anderson et al. (2000) carried out a series of
experiments, considering both physical and biological assimilation
in isolation and jointly. They stated that misalignments between
physical and biological fields led to spurious biological production
unless both physical and biological data were assimilated and
adjusted to one another. Berline et al. (2007) showed that while
surface chlorophyll estimates improved, vertical advective fluxes
of nutrients showed a four- to sixfold increase in the mid-latitudes
and sub-tropics, offering three potential explanations: (1)
improved fidelity of the eddy-pumping process (McGillicuddy
et al., 1998b); (2) misalignment in biological and physical fields
(Anderson et al., 2000); and (3) adjustment of physical fields. Thus
all three efforts showed that physical data assimilation increased
surface phytoplankton concentrations, in places to the betterment
of the model-data misfit, but the underlying cause was not
investigated.

It is the purpose of this paper to examine in detail the impact of
physical data assimilation on ecosystem dynamics. Our focus
region is the California Current System (CCS), and the ecosystem
model is a complex multi-component, self-assembling model
(Follows et al., 2007). We apply a 4-Dimensional Variational Data
Assimilation methodology that is increasingly common in regional
analyses (Moore et al., 2011b; Matthews et al., 2012; Zhang et al.,
2010). The paper is organized as follows. In section ‘Methods’, the
model configuration for physical data assimilative and the ecosys-
tem model are described briefly. Section ‘Model results and com-
parison with observations’ presents the ecosystem model results.
A more complete discussion of the results and conclusions from
the paper are given in section ‘Discussion and conclusion’.

Methods

All modeling described in this study uses the Regional Ocean
Modeling System (ROMS) (Schepetkin and McWilliams, 2005).
The forward model configuration is similar to that discussed by
Veneziani et al. (2009a,b). The model domain spans from the mid-
dle of the Baja peninsula to near the southern tip of Vancouver
Island, and over 1000 km zonally, covering 30–48�N and 116–
134�W, at 1

10
� resolution with 42 terrain-following vertical levels

(Fig. 1). Surface forcing fields are derived from the high-resolution
Coupled Ocean Atmosphere Mesoscale Prediction System
(COAMPS; Doyle et al. (2009), provided by the Naval Research Lab-
oratory). The daily COAMPS surface forcing data has a resolution of
3–9 km along the California and Oregon coasts. Boundary condi-
tions are derived from global state estimates from the project, Esti-
mating the Circulation and Climate of the Ocean (Wunsch and
Heimbach, 2007; Wunsch et al., 2007) which contributed to the
Global Ocean Data Assimilation Experiment.

The data assimilative framework is an incremental approach to
variational assimilation (Courtier et al., 1994) that determines
small adjustments in a control vector from prior values. The Incre-
mental Strong Constraint Four-dimensional Variational Data
Assimilation (I4D-Var) system has been incorporated recently into
ROMS (Moore et al., 2011a). Sequential cycles assimilating sea sur-
face height, sea surface temperature and available in situ hydrog-
raphy have demonstrated lower root-mean squared errors in the
Inter-America Seas (Powell et al., 2009), CCS (Broquet et al.,
2009; Broquet et al., 2011), and Hawaiian waters (Matthews
et al., 2012). The control vector in this study consists of the ocean
state vector (horizontal velocity, temperature, salinity and sea sur-
face elevation) at the start of the assimilation cycle along with the

time-dependent wind stress, surface heat flux and fresh water flux.
The horizontal decorrelation length scale was 300 km for wind
stress and 100 km for heat and freshwater fluxes (Broquet et al.,
2011). We used 14 day assimilation cycles based on analysis of
the validity of the linearized dynamics of the tangent linear model
(Veneziani et al., 2009b).

Surface temperature, sea surface height, and in situ observa-
tions of temperature and salinity are assimilated. The sea surface
height observations are derived from the Aviso delayed-time sea
level anomaly product and their estimate of Mean Dynamic
Topography (Rio et al., 2005). The altimeter products were pro-
duced by Ssalto/Duacs and distributed by Aviso, with support
from Centre National d’ Etudes Spatiales (http://www.aviso.
oceanobs.com/duacs/). We used a blended SST product, produced
through CoastWatch/NOAA-Fisheries using the GEOS, AVHRR and
MODIS platforms. This daily product represents a 5-day mean
with a horizontal resolution of 0.1 degree and is available starting
22 July 2002. In situ T and S quality-controlled data were avail-
able from the UK Met Office (Ingleby and Huddleston, 2007) as
part of the EU ENSEMBLE project (EN3). In the CCS, EN3 data
includes CTD profiles that were collected during California
Cooperative Oceanic Fisheries Investigation (CalCOFI; www.
calcofi.org) and GLOBal ocean ECosystems dynamics (GLOBEC)
cruises as well as data from the World Ocean Data 2005, and
the Global Temperature Salinity Profile Program, Argo float data
and XBT measurements.

The self-assembling ocean ecosystem model was developed by
Follows et al. (2007) and its behavior in the CCS is described in
Goebel et al. (2010). The NPZ-type model includes phytoplankton,
zooplankton, dissolved and particulate organic matter, and multi-
ple inorganic nutrients. This implementation includes 78 phyto-
plankton types, divided into four functional groups: diatoms,
large non-diatoms, Prochlorococcus-like and small non-Prochloro-
coccus-like phytoplankton, each distinguished by their nutrient
requirements. Diatoms require silicate for growth whereas non-
diatoms do not. Prochlorococcus-like phytoplankton can take up
ammonium and nitrite but not nitrate, whereas non-Prochlorococ-
cus-like phytoplankton can utilize all three forms of inorganic
nitrogen. Two size classes of zooplankton species are modeled, rep-
resenting micro and mesozooplankton. Mesozooplankton graze on
microzooplankton as well as phytoplankton.

The sequence of steps followed to obtain ecosystem model esti-
mates for the forward model and I4D-Var is illustrated in Fig. 2.
The physical model is integrated from climatological initial condi-
tions for 6 years, driven by climatological surface forcing and lat-
eral-boundary conditions. The coupled ecosystem model is then
driven by realistic surface and boundary conditions from January
1, 1999 through July 22, 2002, using climatological initial condi-
tions for nutrients, and small and uniformly distributed fields for
other ecosystem variables. Within the model interior, model
dynamics govern changes in fields (i.e., there is no relaxation to cli-
matological values). Particulate material is allowed to sink out of
the domain where it is lost to the system. A series of forward model
cycles and I4D-Var data assimilative cycles proceeds until Decem-
ber 31, 2003. All results reported in this paper correspond to the
model evaluation period from the January 1, 2003 through Decem-
ber 31, 2003.

As far as possible, identical model configurations and dynamical
parameters were used for both the forward model and I4D-Var
though some minor differences were unavoidable. Clamped
boundary conditions were used for the assimilative run, but radia-
tion boundary conditions (Marchesiello et al., 2001) were used for
the non-data assimilative physical model. Generally, radiation
boundary conditions result in fewer near boundary artifacts than
clamped boundary conditions and thus are preferable. However,
data assimilation suppresses these features to increase overall

K. Raghukumar et al. / Progress in Oceanography 138 (2015) 546–558 547

http://www.aviso.oceanobs.com/duacs/
http://www.aviso.oceanobs.com/duacs/
http://www.calcofi.org
http://www.calcofi.org


Download English Version:

https://daneshyari.com/en/article/4552989

Download Persian Version:

https://daneshyari.com/article/4552989

Daneshyari.com

https://daneshyari.com/en/article/4552989
https://daneshyari.com/article/4552989
https://daneshyari.com

