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Abstract

The mathematical framework for turbulent transport in the ocean is reasonably well established. It may be applied to
large-scale fields of scalars in the ocean and to the instantaneous or continuous discharge from a point. The theory and its
physical basis can also provide an interpretation of passive scalar spectra. Spatial variations in the rate of turbulent trans-
fer can be related to the movement of the center of mass of a scalar and to a formulation in terms of entrainment. The
relative dispersion of a scalar with respect to its center of mass and the streakiness of the concentration field within the
relative dispersion domain need to be considered. In many of these problems it is valuable to think in terms of simple mod-
els for individual streaks, as well as overall statistical properties.
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1. Introduction

Including the effects of processes that are unresolved in models is one of the central problems in oceanog-
raphy. In particular, for temperature, salinity, or some other scalar, one seeks to parameterize the eddy flux in
terms of quantities that are resolved by the models. This has been much discussed, with determinations of the
correct parameterization relying on a combination of deductions from the large-scale models, observations of
the eddy fluxes or associated quantities, and the development of an understanding of the processes responsible
for the fluxes. The key remark to make is that it is only through process studies that we can reach an under-
standing leading to formulae that are valid in changing conditions, rather than just having numerical values
which may only be valid in present conditions.

Rather than attempt a comprehensive review, this brief article will summarize, as simply as possible, some
basic ideas and results on dispersion in a turbulent flow, drawing attention in particular to results that may go
beyond standard texts, such as that of Csanady (1973). Some fundamental fluid dynamical ideas and their
application to the ocean will be described in Section 2. Quite apart from the importance of turbulent disper-
sion for the evolution of large-scale patterns in the ocean, it also determines the concentration of material
released from a point source, either instantaneously or continuously. This will also be reviewed.
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For an instantaneous release, it is important to consider not only the ‘‘absolute’’ dispersion with respect to
the point of release, but also the ‘‘relative’’ dispersion with respect to the center of mass of the released sub-
stance (e.g. Csanady, 1973; Fischer et al., 1979; Bennett, 2006). This will be reviewed in Section 3. Further-
more, the ‘‘streakiness’’ within the domain of relative dispersion may be a matter of concern and will be
discussed.

The connection between the flux of a substance, with sharp gradients ultimately disappearing by molecular
diffusion, and the adiabatic stirring associated with the dispersion of marked particles, will be reviewed in Sec-
tion 4. In particular, standard ideas on the connections between stirring and mixing have been generalized to
allow for the treatment of a hierarchy of different turbulent motions. Other, non-turbulent, mechanisms for
dispersion in the ocean will be mentioned in Section 5, though not reviewed in detail.

Although eddy fluxes of potential vorticity or other dynamical quantities are also carried by particles, this
paper will be concerned only with scalars. I hope that the non-expert reader will find it a useful introduction
and that the expert reader will find one or two items of interest to compensate for shortcomings.

2. Eddy fluxes

We consider an ocean in which some scalar has concentration C ¼ C þ C0 where C is the ensemble average
of C and C 0 is its fluctuation. In practice the ensemble average is replaced by an average over time or space.
This requires that there be a spectral gap, i.e. a band of frequency or wavenumber with little variance, between
the slowly varying mean and the rapidly varying fluctuations. This assumption may well be hard to justify; we
return to it later. The equation for the evolution of the mean state C involves the eddy flux F ¼ uC0, where u is
the velocity fluctuation.

It is well recognized that F need not be aligned with the local gradient rC, but may be written in tensor
form as

F i ¼ �T ij
oC
oxj

: ð1Þ

This is formally possible for any flux, but the connection to the local mean gradient may only make physical
sense if the motions responsible for the flux have a ‘‘mixing length’’ that is small compared with the distance
over which C varies significantly.

We may write Tij = Kij + Sij where Kij ¼ 1
2
ðT ij þ T jiÞ and Sij ¼ 1

2
ðT ij � T jiÞ. The symmetric tensor Kij is

diagonalizable and is likely to represent down-gradient diffusion parallel to the principle axes of the tensor.
We return to this later. The antisymmetric tensor Sij has an associated ‘‘skew flux’’ Fs given by

Fsi ¼ �Sij
oC
oxj
¼ �ðD�rCÞi; ð2Þ

where D = �(S23, S31, S12). This flux is perpendicular to rC and may be written as

Fs ¼ �ðr �DÞC þr� ðDCÞ: ð3Þ
The second term of this flux is non-divergent and so does not affect the evolution of C. The first term repre-
sents advection of C with a velocity Us = �($ · D) which may be written as

Usi ¼
oSij

oxj
: ð4Þ

This standard formalism (e.g. Rhines and Holland, 1977; Moffatt, 1983; Middleton and Loder, 1989) is purely
kinematic. Further insights are obtained if we write the fluctuation C 0 in terms of a particle displacement X

from the position where its value of C matches the local mean value. Then C0 ¼ �X joC=oxj provided that
X is small in magnitude compared with the distance over whichrC varies significantly. The eddy flux becomes

uiC
0 ¼ �uiX j

oC
oxj

: ð5Þ

The diffusivity Kij is now 1
2
ðuiX j þ ujX iÞ and the antisymmetric tensor Sij is given by 1

2
ðuiX j � ujX iÞ. The vector

D may be written as 1
2
X� u and the advection Us from (4) may be written as Usi ¼ oðuiX j � KijÞ=oxj.

114 C. Garrett / Progress in Oceanography 70 (2006) 113–125



Download English Version:

https://daneshyari.com/en/article/4553942

Download Persian Version:

https://daneshyari.com/article/4553942

Daneshyari.com

https://daneshyari.com/en/article/4553942
https://daneshyari.com/article/4553942
https://daneshyari.com

