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Computing singular warps from Procrustes aligned coordinates
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Landmark-based morphometric methods enjoy substantial
popularity among morphological researchers in biological anthro-
pology (Richtsmeier et al., 2002), and in some respects were devel-
oped and established within the broader community of evolutionary
anthropologists and biologists (see Bookstein et al., 2004;
Slice, 2007). Beyond the basic tools for analyzing landmark
datadProcrustes superimposition, thin-plate splinesdone of the
most exciting methods to emerge from the geometric morphometric
school is the application of partial least squares analysis to shape
data (Rohlf and Corti, 2000; Bookstein et al., 2003). Using this
approach, researchers are now able to specifically examine complex
patterns of covariation between multiple sets of variables, address-
ing such critical issues as morphological integration (e.g., Bookstein
et al., 2003; Bastir and Rosas, 2005; Bastir et al., 2005; Mitteroecker
and Bookstein, 2007, 2008), ecomorphology (Corti et al., 1996),
phylogeography (Fadda and Corti,1998; Frost et al., 2003; Rosas et al.,
2006), and even morphological homology (e.g., Gunz and Harvati,
2007). When one set of these variables consists of shape coordinates,
the analysis is considered a specific type of partial least squares
called singular warps analysis (Bookstein et al., 2003).

In its simplest manifestation, a comparison between two blocks
of data or two-block partial least squares, singular warps analysis is
based on a singular value decomposition of the cross-covariance
matrix of two sets of variables measured from the same sample of
objects (Rohlf and Corti, 2000; Bookstein et al., 2003). Unlike
a typical covariance matrix, the cross-covariance matrix describes
how each variable in one set covaries with each variable in another,
without including covariances between variables within either set.
It may be more intuitively understood as a submatrix of the usual
covariance matrix, which contains only the covariances between

the two sets of variables. For example, a covariance matrix for six
variables (y1–y6) contains the variance of each on the diagonal and
covariances between every pair of variables in off-diagonal cells
(Fig. 1). If, however, these six measurements are instead conceived
of as belonging to two sets of variables, Y1¼ {y1, y2} and Y2¼ {y3,
y4, y5, y6}, the cross-covariance matrix is simply the off-diagonal
block of covariances that compares variables in Y1 with those in Y2
(Fig. 1, shaded in grey). A singular value decomposition of this
cross-covariance matrix, then, provides a method for exploring
covariation between the two sets of variables rather than covaria-
tion among all of the variables (Rohlf and Corti, 2000).

Accordingly, covariance values in the cross-covariance matrix
are not computationally different from those in a typical covariance
matrix, and can be calculated from the basic equation for the
sample estimate of covariance between two variables (X and Y):

covðX; YÞ ¼
XN

i¼1

ðxi � xÞðyi � yÞ
N � 1

; (1)

where N is the sample size and x and y are the arithmetic means of
the two variables under consideration. In the initial exposition of
singular warps analysis, Bookstein et al. (2003) gave a shortcut
equation for computing the cross-covariance matrix that is useful
particularly for those researchers who wish to program their own
singular warps analyses. This equation bypasses calculation of the
full covariance matrix, instead producing only the cross-covariance
matrix S:

S ¼ ð1=NÞXtY ; (2)

where N is the sample size and X and Y are matrices for two sets of
variables with N rows, corresponding to the same sample of spec-
imens, and columns according to the number of variables in each
set. If each variable in both matrices is first mean-centered (by
variable), then Equation (2) yields the cross-covariance matrix
between variables in X and those in Y.

This equation for the cross-covariance matrix (Bookstein et al.,
2003; Equation (2) in this paper) provides researchers with the
means to adapt singular warps analysis to suit a variety of objec-
tives, some of which may not be possible using readily available
partial least squares software packages (e.g., tpsPLS, MorphoJ, PAST,
IMP). In this case, programmable software packages, such as R, SAS,
or Matlab, can be used to compute the analysis directly while
offering the flexibility to run it in multiple contexts (e.g., iterated
through different sets of variables, exploring the effects of differentE-mail address: kmcnulty@umn.edu
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superimpositions, computing three-block analyses). Herein lies
a potential problem for researchers who are used to performing
statistical analyses on Procrustes aligned shape coordinates (or any
type of data that are not mean-centered by variable): if entered
directly into Equation (2), Procrustes aligned coordinates will not
yield a cross-covariance matrix.

It is commonplace in landmark-based morphometric studies to
use aligned shape coordinates, either in shape space or tangent
space, as variables for analysis (e.g., Singleton, 2002; Frost et al.,
2003; Harvati et al., 2004; Lockwood et al., 2004; McNulty, 2004,
2005; McNulty et al., 2006; Cobb and O’Higgins, 2007; Erwin et al.,
2007; Baab, 2008; Bruner, 2008; Cardini and Elton, 2008a,b; Kim-
merle et al., 2008). Indeed, aligned coordinates are standard output
from those software packages most frequently used to perform
generalized Procrustes analysis (GPA) (Morpheus et al., Slice, 1998;
tpsSmall, Rohlf, 2003; Morphologika2, O’Higgins and Jones, 2006).
However, whereas GPA mean-centers all specimen configurationsdit
superimposes the centroids of each specimendGPA does not mean-
center each coordinate within the specimens, and therefore does not
in itself provide suitable variables for use in Equation (2). Because
covariance is calculated by mean-centering each variable, i.e., ðxi � xÞ
and ðyi � yÞ, entering Procrustes aligned shape coordinates into
Equation (2) will not yield a cross-covariance matrix but rather
a cross-products matrix. Results of a singular warps analysis
computed from a cross-products matrix instead of a cross-covari-
ance matrix may be uninterpretable within the original context of
the research question.

Bookstein et al. (2003) properly avoided this problem by
computing singular warps from the Procrustes residuals, which are
the aligned coordinates mean-centered on their corresponding
landmarks in the consensus configuration (Dryden and Mardia,
1998). Mean-centering one’s data is necessary in the computation of
singular warps, regardless of whether shape space or tangent space
coordinates are being used. However, because this step is not spec-
ified in the original publication, though implied by the zero-centered
singular warps plots, there is a significant chance that some

researchers will mistakenly compute S from Procrustes aligned
coordinates rather than from Procrustes residuals. In fact, there is at
least one example of this in the literature already (Harcourt-Smith
et al., 2008), and the stature of these researchers suggests that this
misunderstanding may be easily repeated by other workers.

Example

A simple example illustrates how one’s results might differ if
singular warps are mistakenly computed from simple aligned
coordinates rather than from mean-centered aligned coordinates.
Note that this is only one example, and the specific impact of not
mean-centering the data will differ for each dataset. This example is
based on 3D cranial landmarks from a sample of twenty Gorilla
gorilla and twenty Pan troglodytes specimens, both evenly divided
between sexes. Landmarks were separated into two blocks of data:
block 1 comprised ‘‘facial’’ landmarks (R/L mid-torus superior, R/L
zygomaxillare, glabella, rhinion, anterior attachment of the nasal
septum, alveolare, R/L distal third molar), and block 2 ‘‘neurocranial’’
landmarks (opisthocranion, R/L porion, bregma, basion, hormion).
Details about the dataset as well as the coordinate data for these
specimens are available at http://anthropologylabs.umn.edu/eal/
sas/SASRoutines.phpunde rthe 2BPLS_SW routine. Additional
sample descriptions are presented in McNulty (2003). Blocks 1 and 2
were separately superimposed by GPA so as to not introduce
covariation due to their relative positions in the cranium. Equation
(2) above was used to compute the matrix S from both non-mean-
centered and mean-centered aligned coordinates (X¼ block 1 vari-
ables, Y¼ block 2 variables). Singular value decompositions were
then performed on both Ss, and X and Y were matrix multiplied by
their corresponding singular vector matrices to obtain scores for
each specimen on the singular warps.

Results of the two analyses are summarized in Fig. 2 as plots of
the first singular warps for the neurocranial versus the facial
landmarks. The left graph (Fig. 2a) illustrates specimen scores
obtained without mean-centering the data, while the right graph
(Fig. 2b) shows singular warp scores from mean-centered aligned
coordinates. One can see a clear difference in the pattern of spec-
imen distributions along the eigenvectors in these graphs, and, in
fact, even the direction of the correlations between the two blocks
is different. This demonstrates that interpretations of these
resultsde.g., the degree of covariance between data blocks, specific
landmarks that covary the most, shape changes associated with the
covariance patterndwould differ greatly. Calculating the angles
between the two block 1 vectors (facial landmarks) and between
the two block 2 vectors (neurocranial landmarks) showed both
cases to be nearly orthogonal (>85�), indicating that these vectors
capture very different aspects of shape change. Results from the
mean-centered data (Fig. 2b) are also more interpretable, with
distinct taxon clusters and, among gorillas, separation of males and
females along the properly computed singular warps. Finally, one
can see that the mean-centered data produce scores that them-
selves are mean-centered (i.e., the centroid of the scatter is 0,0),
although this follows specifically from multiplying the singular
vectors by mean-centered data, and not necessarily from centering
data to compute the cross-covariance matrix.

Computing singular warps

Many practitioners of geometric morphometrics will find that
available software packages for computing two-block partial least
squares analyses are sufficient for their research needs and will
thereby avoid the problem outlined here. Freely available programs
that perform these computations include tpsPLS (Rohlf, 2006),
MorphoJ (Klingenberg, 2008), PAST (Hammer et al., 2001), and
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Figure 1. Example of a covariance matrix for a dataset with six variables (y1, y2, y3, y4,
y5, y6). Variances for each are given on the diagonal of the matrix while covariances
between variables are given off the diagonal. If these variables are consigned to two
sets, Y1¼ {y1, y2} and Y2¼ {y3, y4, y5, y6}, the cross-covariance matrix, shaded in grey,
is a submatrix of the overall covariance matrix that includes only covariances between
a variable in Y1 and a variable in Y2.
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