
The ultimate control flow transfer in a Java
based smart card

Guillaume Bouffard a,b, Jean-Louis Lanet c,*

a Computer Science Department, University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France
b ANSSI, SGDSN, 51, boulevard de La Tour-Maubourg, 75700 Paris 07 SP, France
c INRIA, LHS PEC, 263 Avenue G�en�eral Leclerc, 35042 Rennes, France

a r t i c l e i n f o

Article history:

Received 7 July 2014

Received in revised form

16 December 2014

Accepted 18 January 2015

Available online 7 February 2015

Keywords:

Java Card security

Control flow transfer

Countermeasures

Evaluation

Fault tree analysis

Smart card

Logical attack

a b s t r a c t

Recently, researchers published several attacks on smart cards. Among these, software

attacks are the most affordable, they do not require specific hardware (laser, EM probe,

etc.). Such attacks succeed to modify a sensitive system element which offers access to the

smart card assets. To prevent that, smart card manufacturers embed dedicated counter-

measures that aim to protect the sensitive system elements. We present a generic

approach based on a Control Flow Transfer (CFT) attack to modify the Java Card program

counter. This attack is built on a type confusion using the couple of instructions jsr/ret.

Evaluated on different Java Cards, this new attack is a generic CFT exploitation that suc-

ceeds on each attacked cards. We present several countermeasures proposed by the

literature or implemented by smart card designers and for all of them we explain how to

bypass them. Then, we propose to use Attack Countermeasure Tree to develop an effective

and affordable countermeasure for this attack.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A smart card can be viewed as a smart and secure device

container which stores sensitive assets. It shall ensure a

secure data exchange with the reader. Due to the sensibility of

the assets contained in the smart cards, they are often the

target of attacks. Security issues and risks of these attacks are

ever increasing and continuous efforts to develop counter-

measures against these attacks are sought. This requires a

clear understanding and analysis of possible attack paths and

methods to mitigate them through adequate software/hard-

ware countermeasures. Often countermeasures are designed

in a bottom-up approach, in such a way that they cut effi-

ciently each attack path. The drawback of this design is to

multiply the countermeasures. We propose here to use a top

down approach to mitigate the attack by protecting the asset

instead of blocking the attack path, having thus, a global

approach for the design of the countermeasures.

Control Flow Transfer (CFT) is a technique exploited by an

attacker to executemalicious code. Themain idea is tomodify

the return address of a program with different techniques

such that, while the program ends the current function, it

transfers the control to the address set by the attacker. The

return address is often stored in the stack and the attacker is

able to access (read/write) to this memory location.

* Corresponding author.
E-mail addresses: guillaume.bouffard@ssi.gouv.fr (G. Bouffard), jean-louis.lanet@inria.fr (J.-L. Lanet).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 5 0 (2 0 1 5) 3 3e4 6

http://dx.doi.org/10.1016/j.cose.2015.01.004
0167-4048/© 2015 Elsevier Ltd. All rights reserved.

mailto:guillaume.bouffard@ssi.gouv.fr
mailto:jean-louis.lanet@inria.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.01.004&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2015.01.004
http://dx.doi.org/10.1016/j.cose.2015.01.004
http://dx.doi.org/10.1016/j.cose.2015.01.004

On smart cards, to execute a CFT attack, two approaches

can be used: ill-typed applications and well-typed applica-

tions. With ill-typed applications (Iguchi-Cartigny and Lanet,

2010), the input file has been modified in order to illegally

obtain information. To be executed, the code must be down-

loaded without any verification for example byte code verifi-

cation or any static rule checkers. Therefore, all these attacks

are only possible on development cards. Well-typed applica-

tions can also be split into two parts: permanent or transient.

The first one (Mostowski and Poll, 2008), relies on some

weaknesses of the specification but are now well understood

and all modern cards have enough countermeasures. Tran-

sient well-typed application is a new research field (Barbu

et al., 2010; Bouffard et al., 2011) where an application is cor-

rect while passing through validation test, static analysis or

any rule checker but becomes ill-typed at the execution time.

Well-typed application based attacks use fault injectionwhich

modifies dynamically the behavior of the application, they are

often called combined attack.

Often software attacks are running on one or a couple of

cards. In this paper, we present a generic software attack

which runs on all the evaluated cards. In the set of evaluated

cards, there are recent cards issued from major European

smart card manufacturers. The attack is based on an ill-typed

application, so it does not pass byte code verification process.

A second version is proposed, which is a well-typed applica-

tion, uses a variant of the attack proposed by Bouffard et al.

(2011) to be transformed into an ill-typed application at run-

time. To bypass specific byte code verifier we propose in a

third version to use polymorphic code. This attack demon-

strates that most of ill-typed software attacks can be

improved to becomes transient well-typed application easily.

This attack brings to the fore that the protectionmust focus on

the assets and not on the attack path.

The rest of the paper is organized as follows. First, the Java

Card security is presented in the Section 2. As this platform

contains critical assets to protect, we explain in the Section 3,

the abused mechanisms to obtain smart card assets and how

to prevent that. Based on the CFT approach, we propose in the

Section 4, a generic attack which is evaluated in the Section 5.

Finally, the Section 6 presents a generic approach to protect

our assets and the Section 7 concludes this paper.

2. Java Card security

Java Card is a kind of smart card that implements the speci-

fication Java Card 3 (Oracle and Java Card 3 Platform, 2011) in

one of the two editions Classic Edition or Connected Edition.

Such a smart card embeds a virtual machine that interprets

codes already stored in the ROM area with the operating sys-

tem or downloaded after issuance and stored in EEPROM area.

Java Card which is a subset of Java technology, uses the same

principles. One compiles the Java code to get the class file, one

converts the class file into CAP (Converted APplet) file and

then the program is executed using the Java Card Virtual

Machine (JCVM). The CAP file is a more compact format

designed to reduce the size of the applet image downloaded

into the card and tominimize runtimememory requirements.

The Java Card platform is a multi-application environment

where the sensitive data of an applet must be protected

against malicious access from another applet or from the

external world. For this reason, the ability to download code

into the card is strictly controlled by a protocol defined by

GlobalPlatform (GlobalPlatform, 2011). If mutual authentica-

tion succeeds, it is possible to load new applications into the

card. Loading application into a card is only possible for the

one who owns the authentication keys as specified in the

GlobalPlatform specification (GlobalPlatform, 2011). It is often

done under the responsibility of the operator, which in turn

must ensure that the candidate program is trustful. So, the

security of the system is ensured by the platform (it has the

adequate countermeasure), by the application (it has been

coded according to the design rules) and by the issuer through

a certification process.

2.1. Security architecture

Smart cards security depends on the underlying hardware and

the embedded software. Embedded sensors (light sensors,

heat sensors, voltage sensors, etc.) protect the card from

physical attacks. While the card detects such an attack, it has

the possibility to quickly erase the content of the EEPROM.

This would enable to preserve the confidentiality of secret

data or blocking definitely the card (card is terminated). In

addition to the hardware protection, software are designed to

securely ensure that applications are syntactically and

semantically correct before installation and also sometimes

during execution. They also manage sensitive information

and ensure that the current operation is authorized before

executing it.

The Byte Code Verifier (BCV) ensures the type correctness

of code, which in turn guarantees the Java properties

regarding memory access. For example, it is impossible in the

Java-language to perform an arithmetic operation on refer-

ence. Thus, it must be proved that two elements on top of the

stack are associated to primitive types before performing any

arithmetic operation. On the Java platform, byte code verifi-

cation is invoked at loading time by the loader. Due to the fact

that Java Card does not support dynamic class loading, byte

code verification is performed at the installation time, i.e.,

before loading the CAP onto the card. However, most of the

Java Card smart cards have not an on-card BCV as it is quite

expensive in terms of memory consumption. Thus, a trusted

third party performs an off-card byte code verification and

signs it. On card, the digital signature is verified.

The firewall performs dynamically checks to prevent ap-

plets from accessing (reading or writing) data of other applets.

When an applet is created, the system uses an unique Applet

IDentifier (AID) from which it is possible to retrieve the name

of the package in which it is defined. If two applets are in-

stances of classes from the same Java Card package, they are

considered belonging to the same context. The firewall iso-

lates the contexts in such a way that amethod running within

a context cannot access any attribute or method of objects

belonging to another context unless it explicitly exposes fea-

tures via a Shareable Interface Object. Thus, at runtime, the

interpreter verifies that the context of an accessed object is

equal (or compatible) to the current context. Under some cir-

cumstances, the context can be different, i.e. the runtime has

c om p u t e r s & s e c u r i t y 5 0 (2 0 1 5) 3 3e4 634

http://dx.doi.org/10.1016/j.cose.2015.01.004
http://dx.doi.org/10.1016/j.cose.2015.01.004

Download English Version:

https://daneshyari.com/en/article/455856

Download Persian Version:

https://daneshyari.com/article/455856

Daneshyari.com

https://daneshyari.com/en/article/455856
https://daneshyari.com/article/455856
https://daneshyari.com

