
Effective detection of vulnerable and
malicious browser extensions

Hossain Shahriar c, Komminist Weldemariam a,b,*,
Mohammad Zulkernine a, Thibaud Lutellier a

a School of Computing, Queen's University, Kingston, Ontario, Canada K7L 3N6
b IBM Research e Africa, CUEA, Langata Road, Nairobi, Kenya
c Department of Computer Science, Kennesaw State University, Kennesaw, GA 30144, USA

a r t i c l e i n f o

Article history:

Received 2 January 2014

Received in revised form

20 May 2014

Accepted 8 June 2014

Available online 19 June 2014

Keywords:

Browser extensions

Web security

Malware

Hidden Markov Model

JavaScript

a b s t r a c t

Unsafely coded browser extensions can compromise the security of a browser, making them

attractive targets for attackers as a primary vehicle for conducting cyber-attacks. Among

others, the three factorsmaking vulnerable extensions ahigh-risk security threat for browsers

include: i) the wide popularity of browser extensions, ii) the similarity of browser extensions

with web applications, and iii) the high privilege of browser extension scripts. Furthermore,

mechanisms that specifically target to mitigate browser extension-related attacks have

received less attention as opposed to solutions that have been deployed for commonweb se-

curity problems (such as SQL injection, XSS, logic flaws, client-side vulnerabilities, drive-by-

download, etc.). To address these challenges, recently some techniques have been proposed

to defend extension-related attacks. These techniques mainly focus on information flow

analysis to capture suspicious dataflows, imposeprivilege restrictiononAPI calls bymalicious

extensions, apply digital signatures tomonitor process andmemory level activities, and allow

browser users to specify policies in order to restrict the operations of extensions.

This article presents a model-based approach to detect vulnerable and malicious

browser extensions by widening and complementing the existing techniques. We observe

and utilize various common and distinguishing characteristics of benign, vulnerable, and

malicious browser extensions. These characteristics are then used to build our detection

models, which are based on the Hidden Markov Model constructs. The models are well

trained using a set of features extracted from a number of browser extensions together

with user supplied specifications. Along the course of this study, one of the main chal-

lenges we encountered was the lack of vulnerable and malicious extension samples. To

address this issue, based on our previous knowledge on testing web applications and

heuristics obtained from available vulnerable and malicious extensions, we have defined

rules to generate training samples. The approach is implemented in a prototype tool and

evaluated using a number of Mozilla Firefox extensions. Our evaluation indicated that the

approach not only detects known vulnerable and malicious extensions, but also identifies

previously undetected extensions with a negligible performance overhead.

© 2014 Elsevier Ltd. All rights reserved.

* Corresponding author. School of Computing, Queen's University, Kingston, Ontario, Canada K7L 3N6.
E-mail addresses: weldemar@cs.queensu.ca, k.weldemariam@ke.ibm.com, komminist@gmail.com (K. Weldemariam).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 4 7 (2 0 1 4) 6 6e8 4

http://dx.doi.org/10.1016/j.cose.2014.06.005
0167-4048/© 2014 Elsevier Ltd. All rights reserved.

mailto:weldemar@cs.queensu.ca
mailto:k.weldemariam@ke.ibm.com
mailto:komminist@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.06.005&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.06.005
http://dx.doi.org/10.1016/j.cose.2014.06.005
http://dx.doi.org/10.1016/j.cose.2014.06.005

1. Introduction

Browser extensions have become an integral part of Web

browsers (e.g., Mozilla Firefox, Google Chrome) to enrich the

browser with various functionalities. Extensions are becoming

popular and are the main presentation point for all of the web

contents. For instance, as of July 2 of 2013, more than three bil-

lions1extensionshavebeendownloadedonlyforMozilla Firefox

browser (Mozilla Firefox, 2012a) with over 60 million daily

extensionusers (Lerner et al., 2013).At thesame time, everyweb

user relies on these pieces of software for everyday tasks.

Unfortunately, extensions are frequently targeted by at-

tackers. As a result, attacks such as Cross-Site Scripting (XSS)

and SQL injections are still common in browser extensions.

One of the reasons for this is the presence of potential vul-

nerabilities in extensions and some of them are alsomalicious

by design (Bandhakavi et al., 2011; Louw et al., 2008; Kirda

et al., 2006; Barth et al., 2010; Wang et al., 2012; OWASP,

2013). In addition, todays' exploitation strategies are remark-

ably effective as they exploit vulnerable extensions to deploy

malicious code, infect new victims, join botnets, or system-

atically compromise entire netblocks using automated attack

kits deployed by the blackhats (see, e.g., in Householder et al.,

2002; Dagon et al., 2008; Provos et al., 2008). The common as-

pects of all these attacks are that they are carried over the

web. More importantly, these attacks attempt to penetrate

into the victims' computer by taking advantage of vulnera-

bilities exposed by their browsers or installed browser ex-

tensions (Wang et al., 2006; Stuart Schechter et al., 2007;

MSISAC, 2013; Ford et al., 2009; Seo and Lam, 2010).

In addition, most extensions are thoroughly checked by a

team of security professionals before they are hosted on

trusted websites for distribution. However, various reports

confirmed that the prevalence of vulnerable and malicious

browser extensions is on a continuous rise (Symantec, 2011,

2012; Bandhakavi et al., 2011; Chufeng and Qingxian, 2011;

Chen et al., 2011; Grier et al., 2012; Eshete et al., 2012). We

also observed an increased number of security breaches in

industry and government organizationsde.g., see Symantec

(2011, 2012), McCarthy (2013), and MailOnline (2013). These

trends show that extensions often go through checking

mechanisms without being detected. Note that once an

extension has been installed, it can enjoy the same privilege

level (e.g., read, write, and/or modify) as the browser itself

(Barth et al., 2010). This way extensions can get access to local

filesystem and other sensitive resources through critical APIs.

While extensions (be them benign, vulnerable or malicious)

interact extensively with arbitrary webpages, it is important to

ensure that they are checked for vulnerabilities and malicious-

ness before installing them to mitigate (some of) the unwanted

consequences. For this purpose, so far a number of automated

analysis and detection techniques have been proposed. These

include static and dynamic information flow analysis to check

suspicious data flows from sources to sinks in vulnerable ex-

tensions (Bandhakavi et al., 2011; Dhawan and Ganapathy, 2009;

Djeric and Goel, 2010). Some approaches restrict the privilege of

APIs that could be invoked bymalicious extensions (Barth et al.,

2010), generate and validate digital signatures for benign exten-

sions so that they can be checked at runtime for the presence of

maliciousextensions (Louwetal., 2008),andmonitorprocessand

memory level activities against a set of behaviors of benign ex-

tensions (Kirda et al., 2006). Barua et al. (2013) presented an

approach to differentiate between legitimate and malicious

JavaScript code supplied through unsanitized user inputs to

Firefox extensions using a code randomization and point-to

analysis techniques. A recent work that allows Firefox users to

specifypolicies forextensionsandoffers runtimeenforcementof

those policies is discussed inOnarlioglu et al. (2013). Auser could

specify that extensions are allowed to read from the filesystem

and password manager but not allowed to write to either. Addi-

tionally, the user can use predefined policies or specify a policy

per extension, giving a great deal of control up to the user.

This article presents our approach for detecting browser

extension types by widening and complementing prior works.

Our hypothesis is that the type of a browser extension can be

identified by thoroughly analyzing its distinguishing features

while in operation. These features help determine the be-

haviors of the extension and thereby detect its type auto-

matically. Benign, vulnerable, and malicious extensions can

create, read, and write to local machine and browser specific

resources based on a set of API calls. An API invocationmay or

may not be related to user interactions. We assume that a

benign extension sanitizes user supplied inputs, and performs

actions based on events fromusers. Our specific attention is to

find out the presence of any API that can access sensitive re-

sources of the browser (e.g., cookie, password manager) and

local system (e.g., file, memory, process) between event

handler invocation and content generation process. The

major difference between malicious extension and the others

is usually in the visibility of the user interface and actions that

are performed without user supplied events. Benign and

vulnerable extensions can also be differentiated based on the

presence of input filtering mechanisms.

To verify our hypothesis, in this article, we examined a set

of common and distinguishing functionalities that benign,

vulnerable, and malicious extensions can perform. Three in-

dependentmodels for each extension typewere built based on

Hidden Markov Model (HMM) constructs (Poritz, 1988). The

essential entities (e.g., state, observation sequence) of the

models are built by utilizing the identified characteristic of

benign, vulnerable and malicious browser extensions and our

prior experience. We then used a set of extensions (training

samples), which are collected from various extension sources

(such asMozilla Add-ons repository, Bugzilla reports (Bugzilla,

2013), other websites that report malicious extensions and

related literature) to train the three models. Vulnerable and

malicious extension samples are specifically difficult to find

(also noted elsewhere (Barua et al., 2013; Onarlioglu et al.,

2013)). Hence, we defined rules and applied them to generate

additional training samples such that the detection would be

more accurate and efficient. The models were trained and

evaluated using randomly selected set of benign, vulnerable,

and malicious Firefox browser extensions (test samples). Our

approach detectedmost of the extension types successfully by

monitoring features related to user activities (e.g., click oper-

ation), visibility of operation source (e.g., button, menus

1 Note that we cannot verify the number of downloads are
unique.

c om p u t e r s & s e c u r i t y 4 7 (2 0 1 4) 6 6e8 4 67

http://dx.doi.org/10.1016/j.cose.2014.06.005
http://dx.doi.org/10.1016/j.cose.2014.06.005

Download English Version:

https://daneshyari.com/en/article/455867

Download Persian Version:

https://daneshyari.com/article/455867

Daneshyari.com

https://daneshyari.com/en/article/455867
https://daneshyari.com/article/455867
https://daneshyari.com

