
Enhancing the detection of metamorphic
malware using call graphs

Ammar Ahmed E. Elhadi a,b,*, Mohd Aizaini Maarof a, Bazara I.A. Barry c,
Hentabli Hamza a

a Information Assurance and Security Research Group, Faculty of Computing, Universiti Teknologi Malaysia,

Malaysia
b Elmashreq College for Science and Technology, Sudan
c Faculty of Mathematical Sciences, University of Khartoum, Sudan

a r t i c l e i n f o

Article history:

Received 27 June 2013

Received in revised form

30 June 2014

Accepted 13 July 2014

Available online 22 July 2014

Keywords:

Computer security

Malware

Malware detection

API call graph

API call graph construction

algorithm

API call graph matching

algorithm

a b s t r a c t

Malware stands for malicious software. It is software that is designed with a harmful

intent. A malware detector is a system that attempts to identify malware using Application

Programming Interface (API) call graph technique and/or other techniques. API call graph

techniques follow two main steps, namely, transformation of malware samples into an API

call graph using API call graph construction algorithm, and matching the constructed

graph against existing malware call graph samples using graph matching algorithm. A

major issue facing malware API call graph construction algorithms is building a precise call

graph from information collected about malware samples. On the other hand call graph

matching is an NP-complete problem and is slow because of computational complexity .In

this study, a malware detection system based on API call graph is proposed. In the pro-

posed system, each malware sample is represented as an API call graph. API call graph

construction algorithm is used to transform input malware samples into API call graph by

integrating API calls and operating system resource to represent graph nodes. Moreover,

the dependence between different types of nodes is identified and represented using graph

edges. After that, graph matching algorithm is used to calculate similarity between the

input sample and malware API call graph samples that are stored in a database. The graph

matching algorithm is based on an enhanced graph edit distance algorithm that simplifies

the computational complexity using a greedy approach to select best common subgraphs

from the integrating API call graph with high similarity, which helps in terms of detecting

metamorphic malware. Experimental results on 514 malware samples demonstrate that

the proposed system has 98% accuracy and 0 false positive rates. Detailed comparisons

against other detection methods have been carried out and significant improvement over

them is shown.

© 2014 Elsevier Ltd. All rights reserved.

* Corresponding author. Information Assurance and Security Research Group, Faculty of Computing, Universiti Teknologi Malaysia,
Malaysia.

E-mail addresses: ammareltayeb@gmail.com (A.A.E. Elhadi), aizaini@utm.my (M.A. Maarof), bazara.barry@gmail.com (B.I.A. Barry),
hentabli_hamza@yahoo.fr (H. Hamza).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 4 6 (2 0 1 4) 6 2e7 8

http://dx.doi.org/10.1016/j.cose.2014.07.004
0167-4048/© 2014 Elsevier Ltd. All rights reserved.

mailto:ammareltayeb@gmail.com
mailto:aizaini@utm.my
mailto:bazara.barry@gmail.com
mailto:hentabli_hamza@yahoo.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.07.004&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.07.004
http://dx.doi.org/10.1016/j.cose.2014.07.004
http://dx.doi.org/10.1016/j.cose.2014.07.004

1. Introduction

Malicious software, or malware, is one of the most pressing

security problems on the Internet. The number of Internet

attacks increased by 42% in 2012, and 31% of attacks aimed at

businesses with less than 250 employees and 500 organiza-

tions in a single day (Corporation, 2013). Attackers generate

new malware samples from old ones using code obfuscation,

polymorphism, and new delivery mechanisms such as web-

attack toolkits, which greatly contribute to the significant in-

crease in the number of malware variants being distributed.

Moreover, there is a tendency among malware writers to use

high-level programming languages to write malware and

compile it into binary afterwards, which adds more

complexity to the existing problem and demonstrates the

need for effective and efficient solutions.

A potential solution is API call graph which is a high-level

structure that abstracts instruction level details and is thus

more resilient to representing the code obfuscations

commonly employed by malware writers or malware devel-

opment tools. It is based on the idea of the call graph which is

a useful data representation of the control and data flow of

programs, and it investigates interprocedural communica-

tion (i.e., how procedures exchange information). In addition

to investigating the relationship between procedures in a

program, call graphs can be used to provide information

regarding local data within each procedure and global data

that are shared among procedures (Ryder, 1979). In such

structure, relationships among program procedures are rep-

resented by a directed graph that contains nodes and edges.

A node in a call graph represents a procedure in the program

whereas a directed edge (u, v) indicates that procedure v is

called by procedure u. Call graphs are a basic program anal-

ysis tool that can either be used to better understand pro-

grams by humans or as a basis for further analysis, such as

an analysis that tracks the flow of values between procedures

and interprocedural program optimization (Lakhotia, 1993).

They can also be used to find procedures that are never

called.

An Application Programming Interface (API) is a collection

of routines, specifications, and tools that enable software

programs to interact with each other. Applications, libraries,

and operating systems can benefit from APIs to define vo-

cabularies and resource request conventions, and to provide

specifications for the interaction between the consumer pro-

gram and the implementer program of the API (Microsoft,

2012).

The API calls list is extracted from a binary executable

through static analysis of the binary with disassembly tools

such as IDA Pro (Pro, 2012) or through dynamic analysis after

executing the binary in a simulated environment, which is the

technique adopted by tools such as API monitor (Monitor,

2012). Although the real API calls can be determined using

dynamic analysis, the malware sample must be executed

many times to get all the different execution paths. To analyse

an executable, obfuscation layers are removed first and

unpacking followed by decryption are applied to the execut-

able. Next, functions are identified and symbolic names are

assigned to them.

API call graph construction using static tools can build a

multipath graph easily, but fails to get the real API calls since

hackers apply techniques like packing and obfuscation to hide

malware calls. Once all API calls (i.e., the vertices in the API

call graph) are identified, the edges between the vertices are

added based on the function calls extracted at the binary

executable analysis step.

The construction of the API call graph for a program

without API operating system resources (i.e., without the pa-

rameters used by API calls) is very simple. One pass through

the API call collected list enables the discovery of all the nodes

and all the edges in the call graph simply by making a table of

all API calls and the references they contain. Each API call

must be analysed just once and the order in which API calls

are examined is not significant. When API operating system

resources are present, however, thework done in constructing

the call graph depends upon the order in which API calls are

analysed. In programs containing API operating system re-

sources, it is possible to have a reference to API operating

system recourses which may represent invocations of several

distinct other API calls. In order to ascertain all possible in-

vocations that result from such a reference in an API call, it is

important to know all the other API calls associated with that

API operating system resource.

Detecting malware through the use of call graphs requires

means to compare call graphs, namely, model and data

graphs, to distinguish call graphs representing benign pro-

grams from call graphs that are based on malware samples.

To compare call graphs, a graph matching algorithm is used.

Matching can be classified into two categories, namely, exact

matching and inexact matching. Exact graph matching applies

when the two graphs have the same number of vertices,

whereas in inexact graph matching the two graphs have

different number of vertices (Riesen et al., 2010). Graph

matching can be done with one of the following techniques:

i. Graph isomorphism.

ii. Maximum common subgraphs (MCS).

iii. Graph edit distances (GED).

Graph isomorphism and MCS are proven to be an NP-

Complete problem (Garey et al., 1976; Michael and Johnson,

1979), and GED is proven to be an NP-hard problem (Zeng

et al., 2009; Hu et al., 2009). Furthermore, both MCS and GED

are computationally expensive to calculate (Kinable and

Kostakis, 2011). A considerable amount of research has been

devoted to develop fast and accurate approximation algo-

rithms for these problems, mainly in the field of image pro-

cessing (Gao et al., 2008) and for bio-chemical applications

(Raymond andWillett, 2002; Weskamp et al., 2007). Graph edit

distance (GED) is the best algorithm for matching inexact

graph type (Riesen et al., 2010; Gao et al., 2010) but its

complexity makes it slow (Riesen and Bunke, 2009).

The work presented in this study is different from the

previous API call graph-based systems in that it addresses two

shortcomings. First, most of the previous API call graph-based

systems focused on constructing the API call graph-based on

dependence between the nodes of API call graph, and the node

itself could either be an API call or parameter of the API call

(i.e., operating system resource). However, to get more precise

c om p u t e r s & s e c u r i t y 4 6 (2 0 1 4) 6 2e7 8 63

http://dx.doi.org/10.1016/j.cose.2014.07.004
http://dx.doi.org/10.1016/j.cose.2014.07.004

Download English Version:

https://daneshyari.com/en/article/455875

Download Persian Version:

https://daneshyari.com/article/455875

Daneshyari.com

https://daneshyari.com/en/article/455875
https://daneshyari.com/article/455875
https://daneshyari.com

