
Static analysis based invariant detection for
commodity operating systems

Feng Zhu*, Jinpeng Wei

School of Computing and Information Science, Florida International University, Miami, FL 33199, USA

a r t i c l e i n f o

Article history:

Received 20 August 2013

Received in revised form

24 January 2014

Accepted 20 February 2014

Keywords:

Integrity modeling

Invariants detection

Malware detection

Static analysis

Tools

a b s t r a c t

Recent interest in runtime attestation requires modeling of a program’s runtime behavior

to formulate its integrity properties. In this paper, we study the possibility of employing

static source code analysis to derive integrity models of a commodity operating systems

kernel. We develop a precise and static analysis-based data invariant detection tool that

overcomes several technical challenges: field-sensitivity, array-sensitivity, and pointer

analysis. We apply our tool to Linux kernel 2.4.32 and Windows Research Kernel (WRK). For

Linux kernel 2.4.32, our tool identifies 284,471 data invariants that are critical to its runtime

integrity, e.g., we use them to detect ten real-world Linux rootkits. Furthermore, compar-

ison with the result of a dynamic invariant detector reveals 17,182 variables that can cause

false alarms for the dynamic detector in the constant invariants category. Our tool also

works successfully for WRK and reports 202,992 invariants, which we use to detect nine

real-world Windows malware and one synthetic Windows malware. When compared with

a dynamic invariant detector, we see similar results in terms of false alarms. Our experi-

ence suggests that static analysis is a viable option for automated integrity property

derivation, and it can have very low false positive rate and very low false negative rate (e.g.,

for the constant invariants of WRK, the false positive rate is one out of 100,822 and the false

negative rate is 0.007% or seven out of 100,822).

ª 2014 Elsevier Ltd. All rights reserved.

Introduction

Remote attestation is a security mechanism that a party in a

distributed environment can employ to determine whether a

target computer has the appropriate hardware/software stack

and configuration, so it can be trusted (i.e., it has integrity).

The idea of remote attestation has been widely adopted. For

example, the trusted platform modules (Trusted Platform

Modules) chip has become a standard component in modern

computers.

Remote attestation has evolved from static attestation to

runtime attestation. Traditional remote attestation

techniques only ensure that a computer is bootstrapped from

trusted hardware and software (e.g., operating systems and

libraries), but there has been a consensus in recent years that

such static attestations are inadequate (Kil et al., 2009;

Loscocco et al., October 2007). This is because runtime at-

tacks such as buffer overflow can invalidate the result of static

attestation during the execution of the target system, so a

remote challenger cannot gain high confidence in a target

system even if it is statically attested (Kil et al., 2009). In order

to regain high confidence, the challenger must enhance

traditional remote attestation with runtime attestation, or

runtime integrity checking.

* Corresponding author. Tel.: þ1 3054952306.
E-mail addresses: fzhu001@fiu.edu, zzztemple@126.com (F. Zhu), weijp@cis.fiu.edu (J. Wei).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 4 9e6 3

http://dx.doi.org/10.1016/j.cose.2014.02.008
0167-4048/ª 2014 Elsevier Ltd. All rights reserved.

mailto:fzhu001@fiu.edu
mailto:zzztemple@126.com
mailto:weijp@cis.fiu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2014.02.008&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2014.02.008
http://dx.doi.org/10.1016/j.cose.2014.02.008
http://dx.doi.org/10.1016/j.cose.2014.02.008

One of the determining factors of the effectiveness of

runtime attestation is the attestation criteria, i.e., the ex-

pected integrity properties of the target system. Other than a

few static program states (e.g., code segments and constant

data), most of the runtime state of a system (normal variables,

stack, and heap) cannot be trivially characterized. This un-

certainty about the criteria results in two classic attestation

errors: false positives and false negatives. False positives

happen when the remote challenger endorses an overly

stringent criterion that even an uncompromised system fails

to meet; and false negatives happen when the challenger

endorses an overly loose criterion that a compromised system

can also meet (i.e., the remote challenger ends up trusting a

corrupted computer). Obviously, both kinds of errors are un-

desirable for remote attestation.

The root cause for the above attestation errors is the lack of

precise specifications of expected integrity properties. While

under-specification can reduce the rate of false positives by

lowering the bar for a target system, it allows a compromised

system to obtain trust. On the other hand, over-specification

errs on the side of safety to ensure that no compromised

system can pass the integrity check, but it may raise toomany

false alarms.

Since integrity properties are attributes of the target sys-

tem, a precise specification demands a thorough analysis of

the target system. Researchers have taken several kinds of

approaches to analyze a target system for its integrity prop-

erties. Manual analysis relies on domain expertise to specify

and prove the correctness of integrity properties. It is appli-

cable to well-understood properties such as the immutability

of the Interrupt Descriptor Table (IDT), but it is not scalable to

complex software such as the Linux kernel. Therefore, auto-

mated tools are much desired to assist a human expert. Dy-

namic analysis tools such as Gibraltar (Baliga et al., 2008) and

ReDAS (Kil et al., 2009) infer likely integrity properties (called

invariants) of a system by reading the runtime states (e.g.,

memory snapshots that contain program variables) of the

target system and hypothesizing whether some variables

satisfy predefined invariant relationships. One example rela-

tionship is that a variable vmust always have a constant value

k at runtime. However, it is well-known that dynamic analysis

has difficulty in exploring all possible program execution

paths, so it may generate false invariants. For example,

Gibraltar generates about 4673 false invariants for Linux

kernel 2.4.20 (Baliga et al., 2008). A typical solution to over-

come such shortcomings is to use a large set of test cases (e.g.,

ReDAS created 70 training scenarios and 13,000 training ses-

sions for the ghttpd server). However, how to systematically

generate a large number of test cases that can trigger all

execution paths in a program remains a challenging research

problem in general.

In this paper, we explore the applicability of static analysis

for finding integrity properties. The basic idea is to use

compiler technology to analyze the behavior of a program to

derive its integrity properties, without actually running the

program. Static analysis can overcome the limitations of

dynamic analysis by exploring all execution paths. For

example, if v ¼ vþ2 is found in the true or false branch of a

conditional statement in the target program, then the prop-

erty that “variable v always has a constant value at runtime”

is likely false. However, a dynamic analysis tool cannot

observe this assignment if the test cases do not satisfy the

condition for the assignment; as a result, a dynamic analysis

tool may conclude that v is a constant. Since static analysis

has the source code of the program, it has the advantage to

reveal all conditions for assignments to a variable, so it can

be more precise.

Specifically, we focus on the static detection of one class of

integrity properties called data invariants. These invariants

include properties of global data structures and serve as

specifications of data structure integrity (Baliga et al., 2008).

For example, they can represent critical system integrity

properties such as the immutability of the Interrupt

Descriptor Table (IDT) and the system call table. Therefore,

they have been checked by state-of-the-art integrity monitors

(Kil et al., 2009; Baliga et al., 2008).

Our first contribution is a program analysis tool that can

assist a human expert by automatically deriving data in-

variants from source code, using static analysis. Our tool ap-

plies compiler technology to analyze the control and data

flows (e.g., assignments, function calls, and conditional

statements) of a target program and hypothesizes likely in-

variants (e.g., constant, membership, bounds, and non-zero).

In developing this tool, we have overcome several chal-

lenges in large-scale C program analysis, such as field-

sensitivity, array-sensitivity, and pointer analysis.

Our second contribution is a thorough study of invariants

detection for the Linux kernel and the Windows Research

Kernel (Microsoft, Jan 5, 2014) using static analysis. To the

best of our knowledge, there has not been a similar study.

Both kernels are very complex software posing great chal-

lenges for static analysis by their wide use of pointers and

complex structures. Our tool is able to process 400,492 lines

of Linux kernel (version 2.4.32) code and identify 284,471

invariants essential to the Linux kernel’s runtime integrity.

To validate the result of our tool (e.g., precision), we develop

a dynamic invariant detector (following the spirit of Daikon

(Ernst et al., 2007)) and compare it with our static analyzer.

The comparison suggests that static invariant detection

outperforms dynamic invariant detection in terms of false

positives. For example, in the constant invariants category,

we find 17,182 variables that can cause false alarms for the

dynamic analyzer, while our static tool only misses 18 true

invariants (with false negative rate 0.013%). We also develop

an invariant monitor based on the result of the static anal-

ysis, which detects invariant violations by ten real-world

Linux rootkits and generates only one false alarm against

benign workloads. Moreover, although Windows Research

kernel (version Windows Server 2003), which has 665,969

lines of C code, is even more complex than the Linux kernel,

our tool analyzes it successfully and detects 202,992 in-

variants. Comparison with the result of a dynamic analyzer

shows that the dynamic analyzer generates 21,670 false

constant invariants while our static tool wrongly classifies

only seven true constant invariants as non-constants (with

false negative rate 0.007%). We develop an invariant monitor

in the same way as the Linux kernel and this monitor suc-

cessfully detects nine real-world Windows malware sam-

ples and one synthetic Windows malware, while emitting

only one false alarm. Our study shows that our static tool is

c om p u t e r s & s e c u r i t y 4 3 (2 0 1 4) 4 9e6 350

http://dx.doi.org/10.1016/j.cose.2014.02.008
http://dx.doi.org/10.1016/j.cose.2014.02.008

Download English Version:

https://daneshyari.com/en/article/455889

Download Persian Version:

https://daneshyari.com/article/455889

Daneshyari.com

https://daneshyari.com/en/article/455889
https://daneshyari.com/article/455889
https://daneshyari.com

