

Contents lists available at ScienceDirect

Plant Diversity

journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn

The effects of fresh and rapid desiccated tissue on estimates of Ophiopogoneae genome size

Guangyan Wang a, b, Yongping Yang b, *

- ^a School of Life Sciences, The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing, Anhui, 246133, China
- b Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China

ARTICLE INFO

Article history:
Received 15 March 2016
Received in revised form
7 June 2016
Accepted 8 June 2016
Available online 4 August 2016

Keywords:
Ophiopogoneae model
Plant species
Genome size
Fresh tissue
Desiccated tissue

ABSTRACT

Fresh plant material is usually used for genome size estimation by flow cytometry (FCM). Lack of fresh material is cited as one of the main reasons for the dearth of studies on plants from remote locations. Genome sizes in fresh versus desiccated tissue of 16 Ophiopogoneae species and five model plant species were estimated. Our results indicated that desiccated tissue was suitable for genome size estimation; this method enables broader geographic sampling of plants when fresh tissue collection is not feasible. To be useful, after dessication the Ophiopogoneae sample should be green without brown or yellow markings; it should be stored in deep freezer at $-80\,^{\circ}\text{C}$, and the storage time should be no more than 6 months.

Copyright © 2016 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Genome size is the amount of DNA in a non-replicated, basic, gametic chromosome set (Soltis et al., 2003). It has been estimated in several thousand plant species since 1950 (Hanson et al., 2001), including at least 152 gymnosperms species (Leith et al., 2001) and 7542 angiosperms species (Bennett and Leitch, 2011). Genome size variation in angiosperms is especially impressive, ranging from 0.06 pg (Genlisea tuberosa Rivadavia) to 152.23 pg (Paris japonica (Franch. & Sav.) Franch.) (Pellicer et al., 2010; Fleischmann et al., 2014). Such large-scale analyses have been enabled in part by using flow cytometry (FCM), a highthroughput method of estimating DNA content from isolated nuclei that are stained with a DNA-selective fluorochrome (Bainard et al., 2011). The popularity of FCM lies in its numerous advantages: (1) easy and convenient sample preparation; (2) high accuracy that permits the detection of minute variations in nuclear DNA amount; (3) rapid detection of mixed samples or endopolyploidy; (4) its non-destructive nature, which permits the comprehensive investigation of rare and endangered species or seedlings in a very early ontogenetic stage; and (5) low operating costs (Dolezel, 1991).

The tribe Ophiopogoneae (Asparagaceae) has three genera: Ophiopogon Ker Gawl., Liriope Lour., and Peliosanthes Andr., which are mainly distributed in tropical, subtropical, and temperate regions of East and Southeast Asia. DNA content has been reported for only a few species (Bennett, 1972; Bharathan et al., 1994; Zonneveld et al., 2005; Lattier and Ranney, 2014). Best practices for FCM generally recommend that DNA content is measured using fresh tissue. Lack of fresh material is cited as one of the main reasons for the dearth of studies on plants from remote locations. Therefore, analyzing dehydrated tissue might be an attractive alternative. Tissue desiccation, using either herbarium presses or silica gel, is a rapid and undemanding approach that has been used traditionally for sample preservation in field botany (Suda and Travnicek, 2006a). Voglmayr (2000) was the first who estimated genome size in herbarium voucher specimens of mosses. The number of FCM studies that successfully used desiccated plant material has increased considerably, e.g., in Juncus biglumis (Schonswetter et al., 2007), Lychnis spp. (Popp et al., 2008), and Senecio carniolicus (Suda et al., 2007). Bainard et al. (2011) showed that rapidly dried tissue

^{*} Corresponding author.

E-mail address: yangyp@mail.kib.ac.cn (Y. Yang).

Peer review under responsibility of Editorial Office of Plant Diversity.

Table 1Analysis of genome size variation between fresh and desiccated tissue in Ophiopogoneae and 5 model plant species.

Taxa	Herbarium voucher number	Locality in China (Province, City)	2C-Value ± SE (fresh tissue)	$2C$ -value \pm SE	Paired t-test
				(desiccated tissue)	
Study species					
O. bodinieri Lévl.	20081615	Yunnan, KIB	11.22±0.11	11.73±0.58	t = 0.987, P = N.S.
O. bockianus Diels	HGWZ506	Hunan, Yongshun	18.40 ± 0.42	16.68 ± 0.68	t = 1.993, P = N.S.
	nie2350	Guangxi, Longzhou	17.49 ± 0.29	17.39±0.90	t = 0.140, P = N.S.
O. chingii Wang et Tang	nie3739	Yunnan, Malipo	11.98 ± 0.29	12.26±0.18	t = -0.216, P = N.S.
O. chingii var. glaucifolious	nie2325	Guangxi, Fangcheng	15.16±2.57	14.50±0.85	t = 0.153, P = N.S.
F. T. Wang & L. K. Dai					
O. dracaenoides (Baker)	HGWZ557	Yunnan, Mengla	13.31±1.07	14.53±0.34	t = -0.581, P = N.S.
Hook. f.					
O. mairei Lévl.	B673	Hunan, Zhangjiajie	12.31±0.11	12.91±0.67	t = -1.060, P = N.S.
O. marmortus Pierre ex	HGWZ625	Yunnan, Puer	11.22 ± 0.08	12.05±0.19	t = -3.609, P = N.S.
Rodrig.					
O. peliosanthoides Wang	HGWZ570	Yunnan, Ninglang	8.84 ± 0.10	8.90 ± 0.20	t = -0.203, P = N.S.
et Tang					
O. pingbienensis Wang	nie3535	Yunnan, Lijiang	13.97±0.11	15.18±0.44	t = -3.476, P = N.S.
et Dai					
O. platyphyllus Merr. et	HGWZ655	Hainan, Baoting	18.50±0.14	19.45±1.61	t = -0.647, P = N.S.
Chun					
	nie2340	Guangxi, Longzhou	14.73 ± 0.15	14.29±0.81	t = 0.616, P = N.S.
O. revolutus Wang et Dai	HGWZ556	Yunnan, Mengla	12.58±0.16	12.76±1.24	t = -0.144, P = N.S.
	HGWZ636	Yunnan, Puer	9.57±0.10	9.77 ± 0.28	t = -0.560, P = N.S.
	HGWZ598	Yunnan, Jinghong	11.33 ± 0.17	11.82±0.28	t = -1.611, P = N.S.
O. szechuanensis Wang et	HGWZ593	Yunnan, Jinghong	11.07 ± 0.13	10.21 ± 0.33	t = 3.983, P = N.S.
Dai					
O. umbraticola Hance	HGWZ00791	Yunnan, KIB	13.38±0.19	13.70±0.23	t = -1.273, P = N.S.
L. spicata (Thunb.) Lour.	nie3830	Yunnan, Maguan	11.90±0.10	12.81±0.40	t = -3.268, P = N.S.
P. ophiopogoniodes F. T.	HGWZ536	Yunnan, Pingbian	21.75±0.10	23.73±0.84	t = -2.404, P = N.S.
Wang & Tang					
P. sinica Wang et Tang	HGWZ587	Yunnan, Puer	29.36±1.05	30.38 ± 0.60	t = -0.624, P = N.S.
	nie2364	Guangxi, Longzhou	25.75±0.56	26.27±1.12	t = -0.279, P = N.S.
P. yunnanensis Wang et	nie3724	Yunnan, Malipo	24.55±0.89	22.72±0.27	t = 1.250, P = N.S.
Tang					
Model species					
Arabidopsis thaliana (L.)			0.32±0.01	0.34±0.01	t = -3.463, P = N.S.
Heynh.			0.52-0.01	0.5 1-0.01	. 5.105,1 11.5.
Oryza sativa L. spp. japonica			0.98±0.03	1.05±0.01	t = -2.945, P = N.S.
Lycopersicon esculentum Mill.			1.98±0.04	1.89±0.08	t = 1.096, P = N.S.
Glycine max (L.) Merr.			2.30±0.08	2.27±0.05	t = 0.319, P = N.S.
Siyonio mun (1.) 111011.			2.50-0.00	2.27-0.03	0.517,1 14.5.

with silica gel can be efficiently used in genome size studies. Bai et al. (2012) also successfully used rapidly desiccated tissue for estimating genome size in 37 taxa.

Here, we compare the use of fresh and desiccated tissue for estimating genome size in the Ophiopogoneae and five model plant species (*Arabidopsis thaliana* (L.) Heynh., *Zea mays* L., *Oryza sativa* L., *Glycine max* (L.) Merr., and *Lycopersicon esculentum* Mill.).

2. Materials and methods

2.1. Plant material

We sampled 22 accessions representing 16 species of *Ophiopogon, Liriope*, and *Peliosanthes* in the Ophiopogoneae, and collected five model plant species from different families spanning a nearly

Download English Version:

https://daneshyari.com/en/article/4558891

Download Persian Version:

https://daneshyari.com/article/4558891

<u>Daneshyari.com</u>