
Breaking and fixing the Android Launching
Flow

Alessandro Armando a,b, Alessio Merlo a,c,*, Mauro Migliardi d,
Luca Verderame a

aDIBRIS, Università degli Studi di Genova, Italy
b Security & Trust Unit, FBK-irst, Trento, Italy
cUniversità e-Campus, Italy
dDEI, University of Padova, Italy

a r t i c l e i n f o

Article history:

Received 24 November 2012

Received in revised form

13 March 2013

Accepted 15 March 2013

Keywords:

Android OS

Android security

Android security framework

Zygote vulnerability

Denial-of-Service

a b s t r a c t

The security model of the Android OS is based on the effective combination of a number of

well-known security mechanisms (e.g. statically defined permissions for applications, the

isolation offered by the Dalvik Virtual Machine, and the well-known Linux discretionary

access control model). Although each security mechanism has been extensively tested and

proved to be effective in isolation, their combination may suffer from unexpected security

flaws. We show that this is actually the case by presenting a severe vulnerability in Android

related to the application launching flow. This vulnerability is based on a security flaw

affecting a kernel-level socket (namely, the Zygote socket). We also present an exploit of

the vulnerability that allows a malicious application to mount a severe Denial-of-Service

attack that makes the Android devices become totally unresponsive. Besides explaining

the vulnerability (which affects all versions of Android up to version 4.0.3) we propose two

fixes. One of the two fixes has been adopted in the official release of Android, starting with

version 4.1. We empirically assess the impact of the vulnerability as well as the efficacy of

the countermeasures on the end user. We conclude by extending our security analysis to

the whole set of sockets, showing that other sockets do not suffer from the same vulner-

ability as the Zygote one.

ª 2013 Elsevier Ltd. All rights reserved.

1. Introduction

By leveraging a generic Linux kernel, the Android OS is built

out of a layered architecture that runs on a wide variety of

devices and supports the execution of a large number of ap-

plications available for download both inside and outside the

Google Play Store. Since most applications are developed by

third-parties, security is a major concern. The Android secu-

rity model tackles the problem by striving to attain the

following design goal:

A central design point of the Android security architecture is that

no application, by default, has permission to perform any oper-

ation that would adversely impact other applications, the oper-

ating system, or the user.http://developer.android.com/

guide/topics/security/security.html

This goal is pursued through a number of cross-layer

security mechanisms aimed at isolating applications from

each other. These mechanisms are built out of basic security

mechanisms available in the individual layers of the Android

* Corresponding author. DIBRIS, Università degli Studi di Genova, Via all’Opera Pia, 13, 16145 Genova, Italy. Tel.: þ39 (0)10 3532344.
E-mail addresses: alessandro.armando@unige.it, armando@fbk.eu (A. Armando), alessio.merlo@uniecampus.it, alessio.merlo@unige.

it (A. Merlo), mauro.migliardi@unipd.it (M. Migliardi), luca.verderame@unige.it (L. Verderame).

Available online at www.sciencedirect.com

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 1 0 4e1 1 5

0167-4048/$ e see front matter ª 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cose.2013.03.009

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
mailto:alessandro.armando@unige.it
mailto:armando@fbk.eu
mailto:alessio.merlo@uniecampus.it
mailto:alessio.merlo@unige.it
mailto:alessio.merlo@unige.it
mailto:mauro.migliardi@unipd.it
mailto:luca.verderame@unige.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2013.03.009&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2013.03.009
http://dx.doi.org/10.1016/j.cose.2013.03.009
http://dx.doi.org/10.1016/j.cose.2013.03.009

stack. For instance, application sandboxing1 is achieved by

combining the isolation guaranteed by the use of Dalvik

Virtual Machines together with the native Discretionary Ac-

cess Control (DAC) offered by Linux and with a set of stati-

cally defined Android permissions specifying which operations

each application is allowed to execute. These permissions

regulate access to hardware components such as the tele-

phony subsystem as well as accesses to sensitive data (e.g.

messaging history) and to inter-process communication

mechanisms (e.g. intent and broadcast). Each Android

application comes up with a set of permissions (i.e. corre-

sponding to operations the application requires to execute

during its life cycle) that the user must explicitly grant during

installation or upgrade. According to their potential risk,

Android permissions are divided into four categories, namely

(from lower to higher risk) normal, dangerous, signature and

signatureOrSystem.2

The individual mechanisms are generally well-known and

have been thoroughly tested i.e. the isolation offered by vir-

tual machines has been tested for Java applets, access control

for Unix/Linux is well-known, and explicit permissions have

been tested inside the Java security architecture. However,

this is not the case for the specific combination deployed in

Android: the cross-layer interaction among the available

mechanisms has not been fully explored yet and may there-

fore suffer from security weaknesses.

In this paper we present a serious vulnerability in the

Android Launching Flow. The Android Launching Flow is a

sequence of activities that are normally carried out by the

system whenever a new application is launched. In Android,

applications cannot directly fork new processes and a single

process, the Zygote Process, is permitted to carry out this

crucial activity. Requests for the creation of new processes are

therefore sent to the Zygote Process through a specific socket,

called the Zygote Socket.

Up to OS version 4.0.3 included, the Android Launching

Flow suffered from a vulnerability that allows a malicious

application to side-step all Android security checks and force

the system to fork an unbounded number of processes

thereby making the device completely unresponsive. In order

to exploit the vulnerability, a malicious application does not

need any Android permission.

Rebooting the device does not necessarily help as a

malicious application can be crafted in such a way to be

automatically launched at boot-time without asking for

the user’s explicit approval of any permission upon instal-

lation. This makes the malicious applications particularly

mischievous as even the most cautious user may consider it

as harmless.

More in general, the existence of this vulnerability shows

that the aforementioned fundamental design goal of the

Android Security Framework, i.e. the impossibility for an

application to adversely impact another application, is not

met. Indeed, a malicious application can severely affect all

other applications, the operating system, and ultimately the

user’s experience.

In the paper we also propose two solutions to the problem:

the first solution involves minimal changes in the Android

security model, the second requires a number of additional

cross-layer checks. We show that both solutions are equally

effective in fixing the vulnerability.

In the paper we also report on experimental results con-

firming that:

� all versions of Android OS up to 4.0.3 included (that means

80% of Android devices in March 2013) suffer from the

vulnerability,

� our proposed fixes effectively counter the DoS attack, and

� the two most recent versions of Android (namely, versions

4.1 and 4.2) no longer suffer from the vulnerability.

We have promptly informed of our findings both the

Android Security Team and the US-CERT. In response to our

findings, the Android OS has been swiftly patched by incor-

porating (a simplified variant of) one of our two fixes in the

two most recent versions of Android. Moreover, the US-CERT

has recently issued a vulnerability note (CVE-2011-3918) that

describes the issue and evaluates its severity as HIGH.3

This paper revises and extends our previous work

(Armando et al., 2012b) in a number of ways:

� we provide a more detailed analysis of the Android archi-

tecture and of its security mechanisms;

� we provide an extended description of the vulnerability as

well as of the countermeasures, by adding details that are

necessary to fully understand and reproduce the problem,

and the proposed fixes;

� we extend the experiments related to both the vulnerability

and the countermeasures by involving end users;

� we provide a new section describing the recent de-

velopments in the Android architecture related to the dis-

cussed vulnerability and the patch adopted in the latest

versions of Android;

� we assess the security of two additional sockets used by

Android that are very similar to the Zygote socket.

� we report the results of an experimental analysis that con-

firms the effectiveness of the fixes in countering the DoS

attack and that the patches do not affect the nominal

behavior of the system.

1.1. Structure of the paper

In the next section we provide a brief description of the

Android architecture. In Section 3 we describe the security

mechanisms used in Android. In Section 4 we present the

vulnerability and in Section 5 we illustrate two possible so-

lutions. In Section 6 we present our experimental results. In

Section 7 we discuss the effectiveness of the fix incorporated

in Android and extend our security analysis to other parts of

Android. In Section 8 we compare our work with the current

Android literature and we conclude in Section 9 with some

final remarks.
1 http://developer.android.com/guide/practices/security.html.
2 http://developer.android.com/guide/topics/manifest/

permission-element.html.

3 http://web.nvd.nist.gov/view/vuln/detail?vulnId¼CVE-2011-
3918.

c om p u t e r s & s e c u r i t y 3 9 (2 0 1 3) 1 0 4e1 1 5 105

http://developer.android.com/guide/practices/security.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://web.nvd.nist.gov/view/vuln/detail%3fvulnId%3dCVE-2011-3918
http://web.nvd.nist.gov/view/vuln/detail%3fvulnId%3dCVE-2011-3918
http://web.nvd.nist.gov/view/vuln/detail%3fvulnId%3dCVE-2011-3918
http://dx.doi.org/10.1016/j.cose.2013.03.009
http://dx.doi.org/10.1016/j.cose.2013.03.009

Download	English	Version:

https://daneshyari.com/en/article/455964

Download	Persian	Version:

https://daneshyari.com/article/455964

Daneshyari.com

https://daneshyari.com/en/article/455964
https://daneshyari.com/article/455964
https://daneshyari.com/

