
Extending the enforcement power of truncationmonitors
using static analysis

Hugues Chabot, Raphaël Khoury*, Nadia Tawbi

Département d’informatique et de génie logiciel, Université Laval, 1065, av. de la Médecine, Québec City, Québec, Canada G1V 0A6

a r t i c l e i n f o

Article history:

Received 29 June 2010

Received in revised form

23 October 2010

Accepted 21 November 2010

Keywords:

Computer security

Dynamic analysis

Monitoring

Software safety

a b s t r a c t

Runtime monitors are a widely used approach to enforcing security policies. Truncation

monitors are based on the idea of truncating an execution before a violation occurs. Thus,

the range of security policies they can enforce is limited to safety properties. The use of an

a priori static analysis of the target program is a possible way of extending the range of

monitorable properties. This paper presents an approach to producing an in-lined trun-

cation monitor, which draws upon the above intuition. Based on an a priori knowledge of

the program behavior, this approach allows, in some cases, to enforce more than safety

properties and is more powerful than a classical truncation mechanism. We provide and

prove a theorem stating that a truncation enforcement mechanism considering only the

set of possible executions of a specific program is strictly more powerful than a mechanism

considering all the executions over an alphabet of actions.

ª 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Execution monitoring is an approach to enforcing security

policies that seeks to allow an untrusted code to run safely by

observing its execution and reacting if necessary to prevent

a potential violation of a user-supplied security policy. This

method has many promising applications, particularly with

respect to the safe use of mobile code.

Academic research onmonitoring has generally focused on

two questions. The first relates to the set of policies that can be

enforced by monitors and the conditions under which this set

could be extended. The second question deals with the way to

in-line a monitor in an untrusted or potentially malicious

program in order to produce a new instrumented program

that provably respects the desired security policy.

While studies on security policy enforcement mechanisms

show that an a priori knowledge of the target program’s

behavior would increase the power of these mechanisms

(Hamlen et al., 2006; Bauer et al., 2002), no further investiga-

tions have been pursued in order to take full advantage of this

idea in the context of runtime monitoring. As a result,

implementations of truncation based monitoring frameworks

remain limited in the set of policies that they can enforce to

the set of safety properties.

This paper, presents an approach to generate a safe instru-

mented program, from a security policy and an untrusted

program in which themonitor draws on an a priori knowledge

of the program’s possible behavior. This allows the monitor to

sometimes enforce non-safety properties, which were beyond

the scope of previous approaches.

This approach draws on advances in discrete events

system control by Ramadge and Wonham (1989) and on

related subsequent research by Langar and Mejri (2005) and

consists in combining two models via the automata product

operator: a model representing the system’s behavior and

another one representing the property to be enforced. In this

* Corresponding author. Tel.: þ1 418 653 0177.
E-mail addresses: hugues.chabot.1@ulaval.ca (H. Chabot), raphael.khoury.1@ulaval.ca (R. Khoury), nadia.tawbi@ift.ulaval.ca

(N. Tawbi).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ier . com/ loca te /cose

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 1 9 4e2 0 7

0167-4048/$ e see front matter ª 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2010.11.004

mailto:hugues.chabot.1@ulaval.ca
mailto:raphael.khoury.1@ulaval.ca
mailto:nadia.tawbi@ift.ulaval.ca
http://www.sciencedirect.com
http://www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2010.11.004
http://dx.doi.org/10.1016/j.cose.2010.11.004
http://dx.doi.org/10.1016/j.cose.2010.11.004

approach, the system’s behavior is modeled by an LTS and the

property to be enforced is stated as a Rabin automaton,

a model which can recognize the same class of languages as

non-deterministic Büchi automata (Perrin and Pin, 2004).

A major advantage of this representation over alternatives

such as the Büchi automaton is its determinism, which

simplifies the method and the associated proofs.

The algorithm either returns an instrumented program that

provably respects the input security policy, otherwise it termi-

nates with an error message. While the latter case sometimes

happens, it is important to stress that thiswill never occur if the

desired property is a safety property which can be enforced

using existing approaches. Indeed, any safety property is still

enforced by truncation as is presently the case in preceding

works. When enforcing a non-safety property, the approach

relies both on static program transformations and runtime

truncation. The approachpresented in this paper is thus strictly

more expressive. Furthermore, this increase in the set of

enforceable property is achieved without relying on the trans-

formative capacities of the edit automaton, and without

imposing a runtime overhead to the execution.

The rest of this paper is organized as follows. Section 2

presents a review of related work. Section 3 defines some

concepts that are used throughout the paper. The elaborated

method is presented in Section 4. Section 5 discusses the

theoretical underpinnings of the method. Some concluding

remarks are finally drawn in Section 6 together with an outline

of possible future work.

2. Related work

Schneider, in his seminal work (Schneider, 2000), was the first

to investigate the question of which security policies could be

enforced by monitors. He focused on specific classes of moni-

tors, which observe the execution of a target program with no

knowledge of its possible future behavior andwith no ability to

affect it, except by aborting the execution. Under these condi-

tions, he found that a monitor could enforce precisely those

security policies that are identified in the literature as safety

properties, and are informally characterized by prohibiting

a certain bad thing from occurring in a given execution. These

properties can be modeled by a security automaton and their

representation has formed the basis of several practical as well

as theoretical monitoring frameworks.

Schneider’s study also suggested that the set of properties

enforceable by monitors could be extended under certain

conditions.Buildingonthis insight,Baueretal. (2002)andLigatti

etal. (2005a) examinedtheway thesetofpoliciesenforceableby

monitors would be extended if the monitor had some knowl-

edge of its target’s possible behavior or if its ability to alter that

behavior were increased. The authors modified the above defi-

nition of a monitor along three axes, namely (1) the means on

which the monitor relies in order to respond to a possible

violation of the security policy; (2) whether the monitor has

access to informationabout theprogram’spossiblebehavior; (3)

and how strictly themonitor is required to enforce the security

policy.Consequently, theywereable toprovidearich taxonomy

of classes of security policies, associated with the appropriate

model needed to enforce them. Several of these models are

strictlymorepowerful than thesecurity automatadevelopedby

Schneider and are used in practice.

Evolving along this line of inquiry, Ligatti et al. (2005b) gave

a more precise definition of the set of properties enforceable

by the most powerful monitors, while Fong (2004) and Talhi

et al. (2008) expounded on the capabilities of monitors oper-

ating under memory constraints. Hamlen et al. (2006), on the

other hand showed that in-linedmonitors (whose operation is

injected into the target program’s code, rather thanworking in

parallel) can also enforcemore properties than thosemodeled

by a security automaton. In Bauer et al. (2006), a method is

given to enforce both safety and co-safety properties by

monitoring. Alternative definitions of enforcementwere given

in Bielova et al. (2009), Khoury and Tawbi (in press) and Ligatti

and Reddy (2010).

The first practical application using this framework was

developed by Erlingsson and Schneider (2000). In that project,

a security automaton is merged into object code, and static

analysis is used to reduce the runtime overhead incurred by

the policy enforcement. Similar approaches, working on

source code, were developed by Colcombet and Fradet (2000),

by Langar and Mejri (2005) and by Kim (2001), Kim et al. (2004),

Lee et al. (1999), Sokolsky et al. (1999). All these methods are

limited to enforcing safety properties, whichmust be included

either as a security automaton, or stated in a custom logic

developed for this application. The first two focus on opti-

mizing the instrumentation introduced in the code.

3. Preliminaries

Before moving on, let us briefly start with some preliminary

definitions.

The desired security property is stated as a Rabin autom-

aton. The Rabin automaton is a finite state automaton which

can recognize infinite-length sequences. The input sequence is

recognized if it satisfies an acceptance condition, given by a set

of pairs of sets of states, which restricts the states which an

accepted sequence can visit infinitely often. When the Rabin

automatonmodels a security property, the accepted sequences

correspond to the sequences satisfying the property. A Rabin

automaton R, over alphabet A is a tuple (Q,q0,d,C) such that

� A is a finite or countably infinite set of symbols;

� Q is a finite set of states;

� q0˛Q is the initial state;

� d4Q�A�Q is a transition function;

� C¼ {(Lj,Uj)jj˛ J} is the acceptance set. It is a set of couples

(Lj,Uj) where Lj4Q and Uj4Q for all j˛ J and J4N.

Let R stand for a Rabin automaton defined over alphabetA.

A subset Q0 4Q is admissible if and only if there exists a j˛ J

such that Q0 X Lj¼ ø; and Q0 XUjsB.

For the sake of simplicity, the elements defining an

automaton or a model are referred to using the following

formalism: the set of states Q of automaton R is referred to as

R$Q or simply Q when R is clear from the context.

A path p, is a finite (respectively infinite) sequence of states

hq1,q2,.,qni (respectively hq1,q2,.i) such that there exists

a finite (respectively infinite) sequence of symbols a1,a2,.,an

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 1 9 4e2 0 7 195

http://dx.doi.org/10.1016/j.cose.2010.11.004
http://dx.doi.org/10.1016/j.cose.2010.11.004

Download	English	Version:

https://daneshyari.com/en/article/456101

Download	Persian	Version:

https://daneshyari.com/article/456101

Daneshyari.com

https://daneshyari.com/en/article/456101
https://daneshyari.com/article/456101
https://daneshyari.com/

