
Determining image base of firmware for ARM devices by
matching literal pools

Ruijin Zhu a, Yu-an Tan a, Quanxin Zhang b, Yuanzhang Li a, Jun Zheng a, b, *

a School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China
b Research Center of Massive Language Information Processing and Cloud Computing Application, Beijing, 100081, China

a r t i c l e i n f o

Article history:
Received 1 August 2015
Received in revised form 19 January 2016
Accepted 21 January 2016
Available online 10 February 2016

Keywords:
Image base
Literal pool
Reverse engineering
Firmware
ARM

a b s t r a c t

In the field of reverse engineering, the correct image base of firmware has very important
significance for the reverse engineers to understand the firmware by building accurate
cross references. Furthermore, patching firmware needs to insert some instructions that
references absolute addresses depending on the correct image base. However, for a large
number of embedded system firmwares, the format is nonstandard and the image base is
unknown. In this paper, we present a two-step method to determine the image base of
firmwares for ARM-based devices. First, based on the storage characteristic of string in the
firmware files and the encoding feature of literal pools that contain string addresses, we
propose an algorithm called FIND-LP to recognize all possible literal pools in firmware.
Second, we propose an algorithm called Determining image Base by Matching Literal Pools
(DBMLP) to determine the image base. DBMLP can obtain the relationship between ab-
solute addresses of strings and their corresponding offsets in a firmware file, thereby a
candidate list for image base value is obtained. If the number of matched literal pools
corresponding to a certain candidate image base is far greater than the others, this
candidate is considered as the correct image base of the firmware. The experimental result
indicates that the proposed method can effectively determine image base for a lot of
firmwares that use the literal pools to store the string addresses.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

Embedded devices have become the usual presence in
our life, such as cell phones, digital cameras, printers, smart
watches and so on. All these devices run special software,
often called firmware, which is usually distributed by
vendors as firmware updates or firmware images (Costin
et al., 2014). Firmware is the soul of embedded devices,
because some embedded devices have no other software

besides firmware, and the firmware also determines the
function and performance of the device.

In the field of digital forensics, we need to reverse
analysis firmwares of the embedded devices in some sce-
narios. For example, (1) By reverse engineering the firm-
ware, back door has been discovered in some devices, such
as D-Link (Heffner, 2013a) and Schneider Electric Quantum
Ethernet Module (Santamarta, 2011). (2) If data stored on
the devices is encrypted, reverse engineering can be
applied to obtain the encryption algorithm and even the
encryption key which can recover the clear data (Zhang
et al., 2015). (3) By reverse engineering the firmwares
released by the competing companies, we can determine
whether they plagiarize our company's algorithms or
infringe our patents and so on. Hence, reverse engineering
is an important technology in the digital forensics.

* Corresponding author. School of Computer Science and Technology,
Beijing Institute of Technology, Beijing, 100081, China.

E-mail addresses: ruijinzhu@gmail.com (R. Zhu), tan2008@bit.edu.cn
(Y.-a. Tan), zhangqx@bit.edu.cn (Q. Zhang), popular@bit.edu.cn (Y. Li),
zhengjun_bit@163.com (J. Zheng).

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/d i in

http://dx.doi.org/10.1016/j.diin.2016.01.002
1742-2876/© 2016 Elsevier Ltd. All rights reserved.

Digital Investigation 16 (2016) 19e28

mailto:ruijinzhu@gmail.com
mailto:tan2008@bit.edu.cn
mailto:zhangqx@bit.edu.cn
mailto:popular@bit.edu.cn
mailto:zhengjun_bit@163.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.01.002&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.01.002
http://dx.doi.org/10.1016/j.diin.2016.01.002
http://dx.doi.org/10.1016/j.diin.2016.01.002


Reverse engineering takes a software system as input
and uses some technology (such as disassembling and
system analysis) to deduce the software source code,
design principles, application structures, algorithms, oper-
ation processing and related documentation. Reverse en-
gineering not only can avoid duplicating efforts and
improve the efficiency and quality of software, but also can
translate legacy system into evolution system to efficiently
reuse them. Some tools such as Binwalk (Heffner, 2013b),
avatar (Zaddach et al., 2014), FRAK (Cui et al., 2013) and BAT
(Hemel and Coughlan, 2009) have been designed to mod-
ularize the firmware unpacking, modification and repack-
ing processes. They are particularly useful in reverse
engineering of firmware. By utilizing reverse engineering,
some previously unknown vulnerabilities or security
weaknesses have been discovered in banking application
(Yoo et al., 2015) and some firmwares of devices, such as
SSD (Zhang et al., 2015), printer (Cui et al., 2013) and sat-
ellite phone (Driessen et al., 2012).

In reverse engineering area, when disassembling
executable file, disassembler needs to know processor type
of its runtime environment and image base1 of executable
file (Basnight et al., 2013a). For a given embedded system
firmware, we can easily get the processor type2 but cannot
get the image base of firmware. Correctly setting the image
base in disassembler during the initial import enhances the
analysis of the firmware. More specifically, setting the
correct image base ensures that subsequent cross refer-
ences are accurate where the cross references use absolute
addresses rather than offsets in the firmware (Schuett et al.,
2014). Cross references include code cross-references and
data cross-references. When lack of these cross references
information, we are difficult to navigate efficiently in
disassembly listing. Facing the obscure disassembly code,
people often lost their direction when they look for parts
code that they are most interested in. On the other hand,
knowledge of the correct image base is critical in under-
standing the firmware as a whole. Working with an incor-
rect image base may lead to inaccurate interpretations of
segments referenced by absolute addresses (Basnight et al.,
2013b).

Related work

As reverse engineering of firmware develops, people
have put a great deal of effort into determining the image
base of firmware techniques. Skochinsky (2010) proposed
a general principle for determining the image base of file
with unknown format. They suggested some kinds of
hints, such as self-relocating code, initialization code,
etc., can be used, but it is not an automatic method and
heavily relies on the engineers' experience. Basnight et al.
(2013b) presented an overview of the reverse

engineering process and proposed a method which can
analyze to learn the image base by absolute addresses in
the instructions. Heffner (2011) presented a method to
infer image base from decompress code in firmware.
Utilizing zeroing loops code in BSS section, Heffner
(2015) also inferred the image base of firmware file. Peck
et al. (2009) scanned the firmware image to look for zlib
compressed section in which they found some symbol
names. When looking through the firmware, a very reg-
ular ten-byte pattern was found in some offset. They
speculated these ten-bytes are addresses of symbol
names, thereby inferred image base.

Santamarta (2011) mentioned that it needs some tricks
to determine image base of firmware, and introduced two
methods. The first method is using the “li instructions trick”
for MIPS firmware. This method consists of searching the li
instructions that load an absolute address into a register.
The trick presumes that a significant number of absolute
addresses refer to locations in the firmware itself, and
therefore have the same base address. Candidate image
base are then tested by rebasing the firmware and deter-
mining if the absolute addresses correctly align with target
data such as functions or strings. Then we can find the
image base with trial and error. The second method is to
use absolute addresses in jump table to determine image
base. The jump table is comprised of absolute addresses of
cases, and then the distances between the cases are
calculated. If a certain distance is different from others, the
corresponding relation between the absolute address of
case and offset can be obtained, by which the base address
can be determined.

All the above methods require intuition and experience
of reverse engineer; in other words, the success and
effectiveness often rely on the human factor. And none of
them focused on automatic methods that can determine
the image base of unknown format files.

Contributions

Binary files with unknown base in reverse engineering
mostly come from embedded firmware of which about 63%
are based on ARM devices (Costin et al., 2014). Hence, we
focus on the image base of firmware on ARM-based devices
and propose a new method to automatically determine the
image base in this paper. The main contributions of our
work are summarized as follows.

(1) Based on the characteristics of literal pool, we propose
an algorithm called FIND-LP to recognize all possible
literal pools that contain string addresses in firmware.
Besides, we can get the string information including
string lengths and offsets in the firmware.

(2) We propose an algorithm called Determining image
Base by Matching Literal Pools (DBMLP) to determine
image base of firmware for the first time. The algorithm
utilizes the literal pools recognized by FIND-LP and the
string information to calculate some appropriate
memory locations which are candidate image base. If

1 The image base is the base address of the executable file loaded into
the memory.

2 There are usually several ways to get processor type, such as
consulting the product manual (Basnight et al., 2013a), physical exami-
nation of the device (Basnight et al., 2013b), disassembling the firmware
and guessing the processor type (Basnight et al., 2013a).

R. Zhu et al. / Digital Investigation 16 (2016) 19e2820



Download English Version:

https://daneshyari.com/en/article/456228

Download Persian Version:

https://daneshyari.com/article/456228

Daneshyari.com

https://daneshyari.com/en/article/456228
https://daneshyari.com/article/456228
https://daneshyari.com

