
F2S2: Fast forensic similarity search through indexing
piecewise hash signatures

Christian Winter*, Markus Schneider, York Yannikos
Fraunhofer Institute for Secure Information Technology SIT, Rheinstr. 75, 64295 Darmstadt, Germany1

a r t i c l e i n f o

Article history:
Received 23 May 2013
Received in revised form 23 July 2013
Accepted 11 August 2013

Keywords:
Digital forensics
Similarity search
Indexing
Piecewise hashing
ssdeep
n-Gram

a b s t r a c t

Fuzzy hashing provides the possibility to identify similar files based on their hash signatures,
which is useful for forensic investigations. Current tools for fuzzy hashing, e. g. ssdeep,
perform similarity search on fuzzy hashes by brute force. This is often too time-consuming
for real cases. We solve this issue for ssdeep and even a larger class of fuzzy hashes, namely
for piecewise hash signatures, by introducing a suitable indexing strategy. The strategy is
based on n-grams contained in the piecewise hash signatures, and it allows for answering
similarity queries very efficiently. The implementation of our solution is called F2S2. This tool
reduces the time needed for typical investigations from many days to minutes.

ª 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Forensic investigators suffer from ever increasing
amounts of data, especially unstructured data. Therefore, it
is essential to automate as much work as possible, and
automatic tools should be highly effective and efficient.

A typical task for a forensic examiner is to identify
digital documents related to criminal activities. An effective
method for supporting this work is matching files against
black- and whitelists. Hence practitioners often utilize
forensic software tools for matching files based on cryp-
tographic hashes of types like MD5 and SHA-1. The NIST
Information Technology Laboratory (2003–2013) provides
a huge reference collection of such hashes through the
National Software Reference Library (NSRL).

On the one hand, cryptographic hashes provide an
efficient means to match files against black- or whitelists.

On the other hand, any small change in a file results in a
completely different hash. Hence files cannot be recognized
anymore after subtle changes – like inserting a single blank
into a text document. Consequently, illegal documents will
be missed by the blacklist after they have been modified
(wittingly or unwittingly). For the same reason, benign files
cannot be identified as such if the particular version is not
in the whitelist – even if similar versions are contained.

In order to avoid these disadvantages of cryptographic
hashes, researchers have proposed various kinds of simi-
larity preserving hash functions for digital forensics. The
hashes produced with such hash functions are called fuzzy
hashes; one particular class of fuzzy hashes are piecewise
hash signatures; cf. Section 2. A prominent software that
creates piecewise hash signatures is ssdeep from Kornblum
(2006a,b). A different example is bbHash from Breitinger
and Baier (2012b). More tools and methods for fuzzy
hashing are mentioned in Section 8.

The usage of fuzzy hashes raises a new challenge: While
a reference list of cryptographic hashes has to be queried
only for exact matches, a reference list of fuzzy hashes has
to be queried for (potentially many) entries similar to the
query item. Finding exact matches can be solved efficiently

* Corresponding author. Tel.: þ49 6151 869 259; fax: þ49 6151 869 224.
E-mail addresses: christian.winter@sit.fraunhofer.de (C. Winter),

markus.schneider@sit.fraunhofer.de (M. Schneider), york.yannikos@sit.
fraunhofer.de (Y. Yannikos).

1 http://www.sit.fraunhofer.de.

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

1742-2876/$ – see front matter ª 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.diin.2013.08.003

Digital Investigation 10 (2013) 361–371

mailto:christian.winter@sit.fraunhofer.de
mailto:markus.schneider@sit.fraunhofer.de
mailto:york.yannikos@sit.fraunhofer.de
mailto:york.yannikos@sit.fraunhofer.de
http://www.sit.fraunhofer.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2013.08.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2013.08.003
http://dx.doi.org/10.1016/j.diin.2013.08.003


with ordinary databases. Finding similar items cannot be
solved that easily. Other indexing strategies are necessary
to gain efficiency for similarity queries. By now no suitable
approach has been proposed for efficient similarity search
over piecewise hash signatures. Therefore, current fuzzy
hashing tools run a brute force search over the whole
reference list in order to answer similarity queries. This
may take days or weeks for processing a typical harddisk.
Thus the brute force method is completely impractical for
real cases.

This paper presents an indexing strategy for piecewise
hash signatures (Section 4). We use the indexing method
for similarity matching of ssdeep hashes, and our experi-
mental results in Section 7 present an impressive speedup
compared to the search method of ssdeep. However, our
method is not restricted to ssdeep and can be applied to
other kinds of piecewise hash signatures, too.

2. Piecewise hash signatures

The general strategy of piecewise hashing is to divide a
file into pieces and to produce a piece hash for each piece.
The piecewise hash signature (PHS) of the file is the
concatenation of all piece hashes. This strategy is driven by
the goal that a small change in the file shall affect only a
small portion of the PHS.

The most simple version of piecewise hashing is block
hashing, where all pieces are consecutive blocks of a fixed
size. As this strategy is not robust against insertion and
deletion of bytes, its main purpose is the recognition of
identical file fragments.

To be robust against insertion and deletion of bytes, the
boundaries of pieces have to be determined based on the
content of the file. Kornblum (2006a) has coined the term
context triggered piecewise hashing (CTPH) for this strat-
egy, and his implementation ssdeep (Kornblum, 2006b) is
one particular instance.

A variation of piecewise hashing uses pieces of fixed
size, but triggers the starting points of pieces based on the
content of the file. Hence pieces may overlap, and there
may be gaps between pieces as well. However, the
concatenation of piece hashes produced for such pieces as
in bbHash (Breitinger and Baier, 2012b) still yields a PHS.

While our solution is intended for piecewise hashing in
general (cf. Section 5.2), we use ssdeep as basis for the
evaluation of our indexing strategy because this program is
a very prominent, prevalent, andmature piecewise hashing
software. Our indexing strategy removes one limitation of
ssdeep, but there are also other weaknesses, e. g.
mentioned by Roussev (2011). In practice, each fuzzy
hashing approach has certain advantages and disadvan-
tages. It is the task of the research community to tackle the
disadvantages and to develop improvements. In fact, some
improvements of ssdeep have already been achieved (cf.
Section 8), and we assume that in addition to our indexing
strategy more improvements will follow.

2.1. ssdeep Hashes

The idea behind the CTPH mechanism of ssdeep is to
determine the boundaries of pieces by a rolling hash

function over a slidingwindow.2Whenever the rolling hash
value has a certain property, a new boundary is triggered.
The rolling hash function in ssdeep is a variation of the
Adler-32 algorithm (Deutsch and Gailly, 1996) on a sliding
window with a size of 7 bytes.

For creating a piece hash, a variation of the Fowler–
Noll–Vo (FNV) algorithm (Noll, 1994–2012) is applied by
ssdeep. Each piece hash is the base64 character corre-
sponding to the six least significant bits of the FNV value. A
PHS is just the concatenation of such piece hashes. Finally,
an ssdeep hash consists of two PHS for reasons explained
later in this section.

One aspect of ssdeep is that it adjusts the size of
pieces to the file size so that the resulting number of
pieces is in the same range for all files. Thus ssdeep uses
larger pieces when hashing larger files. This is achieved
by adjusting the triggering mechanism for piece bound-
aries: A piece size parameter p is derived from the file
size, and a piece boundary is triggered whenever the
rolling hash modulo p is equal to p�1. Hence a larger p
produces less triggers. If the chosen p produces too few
triggers, ssdeep reduces p; if it produces too many trig-
gers, ssdeep discards the exceeding number of triggers.
The parameter p is only allowed to take certain values,
namely those from the geometric sequence 3,6,12,24,.,
which has growth factor 2.

The parameter p (and thus the PHS) is not robust against
small changes in a file. The insertion or deletion of one byte
might change p by one step in the geometric sequence, i. e.
p might be multiplied or divided by 2. As PHS for different
piece size parameters cannot be compared, ssdeep pro-
vides two PHS in one ssdeep hash: a PHS for the parameter
p and one for 2p. This enables the comparison of ssdeep
hashes even if their piece size parameters differ by one
step. Note that the parameter p of the first PHS is declared
as the piece size parameter of the ssdeep hash.

2.2. Generalized definition

This paper assumes that each piece hash is encoded
with one byte. We denote a PHS as sequence of these bytes
by b ¼ b1b2.bl where l˛N is the length of the signature.
Each bi (1 � i � l) is an element of the byte alphabet
A ¼ f0;.;255g. Thus a PHS is a member of A�. This
definition of PHS holds for ssdeep, which restricts itself to a
subset of A with only 64 elements, and for its variants
mentioned in Section 8. Each piece hash of bbHash is
encoded with 4 bits, and thus our definition does not apply.
Nevertheless, our proposed solution can be adjusted to
handle this case, too.

The principles used in our strategy for speeding up the
similarity search do not make additional assumptions on
the PHS; cf. Section 5.2. In particular, the strategy does not
depend on the chosen method for producing piece hashes.
However, when implementing our strategy as a proof of
concept for ssdeep hashes, some details of ssdeep must be
considered as we will see later.

2 A rolling hash value should not be confused with a piece hash. It is
only used to prepare the calculation of piece hashes.

C. Winter et al. / Digital Investigation 10 (2013) 361–371362



Download English Version:

https://daneshyari.com/en/article/456248

Download Persian Version:

https://daneshyari.com/article/456248

Daneshyari.com

https://daneshyari.com/en/article/456248
https://daneshyari.com/article/456248
https://daneshyari.com

