
Acquisition and analysis of volatile memory from android devices

Joe Sylve a, Andrew Case b, Lodovico Marziale b, Golden G. Richard a,*

aDepartment of Computer Science, University of New Orleans, New Orleans, LA 70148, USA
bDigital Forensics Solutions, LLC, New Orleans, LA 70130, USA

a r t i c l e i n f o

Article history:
Received 27 April 2011
Received in revised form 6 September 2011
Accepted 24 October 2011

Keywords:
Android
Memory forensics
Memory analysis
Linux
Mobile device forensics

a b s t r a c t

The Android operating system for mobile phones, which is still relatively new, is rapidly
gaining market share, with dozens of smartphones and tablets either released or set to
be released. In this paper, we present the first methodology and toolset for acquisition
and deep analysis of volatile physical memory from Android devices. The paper
discusses some of the challenges in performing Android memory acquisition, discusses
our new kernel module for dumping memory, named dmd, and specifically addresses the
difficulties in developing device-independent acquisition tools. Our acquisition tool
supports dumping memory to either the SD on the phone or via the network. We also
present analysis of kernel structures using newly developed Volatility functionality. The
results of this work illustrate the potential that deep memory analysis offers to digital
forensics investigators.

ª 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Android operating system now has a substantial
share of the mobile market, and is expected to lead the
market by the end of 2011 (Eweek, 2011). The mass
adoption of Android and its projected growth make it vital
that the forensics community be able to properly acquire
and analyze evidence from the platform. While a few
research efforts have discussed analysis of Android’s file
system and analysis of process memory, we are not aware
of any work to date that completely acquires physical
memory and subsequently performs a coherent analysis of
the acquired memory for Android devices. Physical
memory analysis is vital to investigations, since it contains
a wealth of information that is otherwise unrecoverable.
This evidence includes objects relating to both running
and terminated processes, open files, network activity,
memory mappings, and more. Lack of such information
can make certain investigative scenarios impossible, such
as when performing incident response or analyzing

advanced malware that does not interact with non-
volatile storage.

In this paper, we explore the technical issues associated
with acquiring physical memory captures from Android-
based devices as well as subsequent analysis of the data
acquired. We present a methodology for acquiring
complete memory captures from Android, code to analyze
kernel data structures, and scripts that allow analysis of
a number of userland and file system-based activities. We
believe that Android will continue to require future
forensics research and in order to make our results
immediately usable to researchers and investigators, we
have integrated support for Android memory analysis into
the Volatility Memory Analysis framework (Volatility,
2011). Since Volatility is already used extensively in real
investigations, to support research in memory forensics,
and in a number of training courses, we hope our results
will generate further interest in the Android platform.

2. Related work

The presented research encompasses a number of
related work areas as it includes acquisition of memory and
a number of analysis techniques.

* Corresponding author. Tel.: þ1 504 280 6045.
E-mail address: golden@cs.uno.edu (G.G. Richard).

Contents lists available at SciVerse ScienceDirect

Digital Investigation

journal homepage: www.elsevier .com/locate/di in

1742-2876/$ – see front matter ª 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.10.003

Digital Investigation 8 (2012) 175–184

mailto:golden@cs.uno.edu
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2011.10.003
http://dx.doi.org/10.1016/j.diin.2011.10.003


2.1. Linux volatile memory analysis

In the last few years, there has been a substantial
amount of memory analysis research targeting Linux. The
first systems presented for this purpose were the FATKit
(Walters, 2006), (Burdach, 2004), and memparser (Betz,
2005). Inspired by the DFRWS 2008 challenge (DFRWS,
2008), additional efforts were made to extract forensically
relevant information from memory captures (e.g., Case
et al., 2008). Since then, a number of other research
projects have been presented that perform deep analysis of
Linux kernel data structures as well as userland informa-
tion (Case, 2011; Case et al., 2010a, 2010b; Kollar, 2010). The
result of these projects is the ability to gather numerous
objects and data structures relevant to forensics investi-
gations in an orderly manner. A shortcoming of these
projects, however, was their inability to properly handle
the vast number of Linux kernel versions and the large
number of widely used Linux distributions. Due to the
issues investigators face when attempting to analyze one of
a large number of Linux kernel versions, a number of recent
research projects have attempted to automatically build
kernel structure definitions through a combination of static
and dynamic analysis (Case et al., 2010a, 2010b; Cozzie
et al., 2008; Lin et al., 2010; Slowinska et al., 2011).There
has also been recent work by the Volatility developers to
automatically generate C kernel structure representations
for different Linux kernel versions using debugging infor-
mation, which is similar to how Volatility handles different
versions of the Windows kernel.

While the these projects were able to recover both
allocated and de-allocated instances of kernel structures,
many of them relied on either following references within
data structures or memory scanning using ad-hoc structure
signatures. The ability to accurately find data structures to
which all references are removed is required in order to
find completely freed objects. The problem with current
generation scanners, such as those discussed previously, is
that the signatures were created based on manual and
informal source code review by the project developers.
Illustrating serious problems with this approach, including
the ease in which malware can bypass such weak signa-
tures, were two publications that used virtual machine
introspection and formal methods to construct structure
signatures (Dolan-Gavitt et al., 2009; Lin et al., 2011). Using
the techniques presented in these publications, forensic
investigators are able to scan for instances of data struc-
tures with a degree of confidence, since malware is unable
to easily bypass the signatures and false negatives and false
positives will be minimal.

2.2. Linux memory acquisition

Traditionally, memory captures on Linux were acquired
by accessing the /dev/mem device, which contained a map
of the first gigabyte of RAM. This allowed acquisition of
896 MB of physical memory without the need to load code
into the kernel. This approach did not work for machines
with more than 896 MB of RAM. Due to security concerns,
the /dev/mem device has recently been disabled on all
major Linux distributions, as it allowed for reading and

writing of kernel memory. In order to capture all physical
memory, regardless of size, and to work around the loss of
the /dev/mem device, Ivor Kollar created fmem (Kollar,
2010), a loadable kernel module that creates a /dev/fmem
device supporting memory capture. fmem has been used in
a number of incident response situations and is the defacto
Linux memory acquisition tool. Another tool similar to
fmem is the crash (Anderson, 2008) project by Redhat. For
reasons we discuss later, the fmem module does not work
on Android devices.

2.3. Android memory analysis

There are currently three projects that support varying
levels of Android memory analysis. The first project, vola-
tilitux (Girault, 2010), provides only limited analysis capa-
bilities, including enumeration of running processes,
memory maps, and open files, and does not provide
a method to acquire memory from the phone. Our tech-
niques provide both acquisition and analysis capabilities.

The second related work was published in DFRWS 2010
(Thing et al., 2010). This research project avoided the
technical issues with capturing physical memory on
Android (which we solve in this paper), by focusing on
specific, running processes, and using the ptrace function-
ality of the kernel to dump specific memory regions of
a process. The virtual memory captures are then analyzed
to discover evidence. While this is a good first step, many
important aspects of the Android device’s memory are not
analyzed, including in-kernel structures, networking
information, etc. Another concern is that the approach
requires memory to be extracted separately for each
process of interest, which requires a number of interactions
with the live system and potentially overwrites valuable
evidence. We concentrate instead on physical memory
acquisition and analysis, which provides a superset of the
information contained in the address spaces of individual
processes.

Finally, another tool that is capable of extracting process
memory is memfetch (Zalewski, 2002). This tool dumps
a running application’s address space, either on demand or
when faults (e.g., SIGSEGV) occur. memfetch is portable
across a variety of Linux distributions, including Android,
but cannot acquire physical memory.

3. Acquiring volatile memory

In this section we discuss memory acquisition for
Android and our discussion is broken into a number of
sections for readability. Section 3.1 explains how to prepare
a phone for memory acquisition, Section 3.2 discusses
issues with existing acquisition modules, and Section 3.3
discusses portability issues.

3.1. Preparing the phone

Preparation of the phone for memory acquisition
requires a number of steps, since Android does not support
a memory device that exposes physical memory and
furthermore does not provide APIs to support userland
memory acquisition applications. This means that

J. Sylve et al. / Digital Investigation 8 (2012) 175–184176



Download English Version:

https://daneshyari.com/en/article/456277

Download Persian Version:

https://daneshyari.com/article/456277

Daneshyari.com

https://daneshyari.com/en/article/456277
https://daneshyari.com/article/456277
https://daneshyari.com

