
An empirical examination of the reverse
engineering process for binary files

Iain Sutherland a,*, George E. Kalb b, Andrew Blyth a, Gaius Mulley a

a School of Computing, University of Glamoran, Treforest, Wales, UK
b The Johns Hopkins University, Information Security Institute Baltimore, Maryland, USA

Received 18 November 2004; accepted 4 November 2005

KEYWORDS
Reverse engineering;
Software protection;
Process metrics;
Binary code;
Complexity metrics

Abstract Reverse engineering of binary code file has become increasingly easier
to perform. The binary reverse engineering and subsequent software exploitation
activities represent a significant threat to the intellectual property content of com-
mercially supplied software products. Protection technologies integrated within
the software products offer a viable solution towards deterring the software exploi-
tation threat. However, the absence of metrics, measures, and models to charac-
terize the software exploitation process prevents execution of quantitative
assessments to define the extent of protection technology suitable for application
to a particular software product. This paper examines a framework for collecting
reverse engineering measurements, the execution of a reverse engineering exper-
iment, and the analysis of the findings to determine the primary factors that affect
the software exploitation process. The results of this research form a foundation for
the specification of metrics, gathering of additional measurements, and develop-
ment of predictive models to characterize the software exploitation process.
ª 2005 Elsevier Ltd. All rights reserved.

Introduction

Deployed software products are known to be
susceptible to software exploitation through re-
verse engineering of the binary code (executable)
files. Numerous accounts of commercial companies
reverse engineering their competitor’s product,
for purposes of gaining competitive advantages,
have been published (Bull et al., 1995; Chen, 1995;

Tabernero, 2002). Global movement towards the
use of industrial standards, commercially supplied
hardware computing environments, and common
operating environments achieves software engi-
neering goals of interoperability, portability, and
reusability. This same global movement results in
a reduced cost of entry for clandestine software
exploiters to successfully reverse engineer a binary
code file. A software exploiter, with rudimentary
skills, possesses a threat to recently deployed
commercial software product because (1)
machine-code instruction set and executable file

* Corresponding author.
E-mail address: isutherl@glam.ac.uk (I. Sutherland).

0167-4048/$ - see front matter ª 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2005.11.002

Computers & Security (2006) 25, 221e228

www.elsevier.com/locate/cose

mailto:isutherl@glam.ac.uk
http://www.elsevier.com/locate/cose


formats (Tilley, 2000) are routinely published, (2)
hex editors, dissemblers, software in-circuit emu-
lators tools are readily available via Internet sour-
ces, and (3) similar attack scenarios involving
reverse engineering of binary code files are readily
accessible through numerous hacking websites.
There are also legitimate reasons for reverse engi-
neering code in such cases as legacy systems (Mull-
er et al., 2000; Cifuentes and Fitzgerald, 2000) and
so there is a body of published academic material
(Weide et al., 1995; Interrante and Basrawala,
1988; Demeyer et al., 1999; Wills and Cross,
1996; Gannod et al., 1988) to which a software ex-
ploiter could refer although the main focus of this
effort is at source code level (Muller et al., 2000).

The commercial software product developer is
forced to employ various protection technologies to
protect both the intellectual property content and
the software development investment represented
by the software asset to be released into the
marketplace. The commercial software product de-
veloper must determine the appropriate protection
technologies that are both affordable and supply
adequate protection against the reverse engineering
threat for a desired period of performance.

The absence of predictive models that charac-
terize the binary reverse engineering software
exploitation process precludes an objective and
quantitative assessment of the time since first
release of the software asset to when software
exploitation is expected to successfully extract
useful information content. Similar to parametric
software development estimation models (e.g.,
COCOMO), the size and complexity of the binary
code file to be reverse engineered are considered
to be a prime contributing factor to the time and
effort required to execute the reverse engineering
activity. Additionally, the skill level of the soft-
ware exploiter is also considered to be a primary
contributing factor. This paper describes the exe-
cution of an experiment to derive empirical data
that will validate a set of proposed attributes that
are believed to be the primary factors affecting
the binary reverse engineering process.

Background

An insider is assumed to have access to develop-
mental information resources pertaining to the
commercial software product including the prod-
uct source code. An outsider does not have access
to this information and must resort to analysis of
available software product resources. Such avail-
able software product resources may be little
more than the binary code file as released from

the original developer. The outsider is forced to
execute a binary reverse engineering activity
beginning with the binary code file and concluding
when some desired end goal has been achieved.

The entry criterion is defined as the time when
the outsider first obtains a copy of the binary code
file so as to commence the reverse engineering
process. The commercial software product vendor
must assume that this entry criterion coincides
with the first market release of the product.

The exit criterion is determined by the time when
the outsider has satisfied a particular end goal for
the software exploitation process. Unlike software
development activities where the singular end goal
is to deliver a reasonably well-tested software
product to an end user given the available funding
and schedule resources, binary reverse engineering
activities may have multiple software exploitation
end goals (Kalb). The first software exploitation end
goal is defined as obtaining sufficient information re-
garding the software product’s operational function,
performance, capabilities, and limitation. Satisfying
this first software exploitation end goal enables the
software exploiter to transfer the information gath-
ered to other software products that are either in
development or are already deployed. The second
software exploitation end goal builds upon the first
and is defined as enabling minor modifications to
alter/enhance the deployed software product. Sat-
isfying this second software exploitation end goal
enables (1) circumvention of existing performance
limiters and protection technologies to enhance
the operational performance of the deployed soft-
ware product, and/or (2) insertion of malicious
code artefacts to corrupt the execution of the de-
ployed software product. The third software exploi-
tation end goal builds upon the previous two and is
defined as enabling major modifications to enhance
the operational performance of the deployed soft-
ware product. Satisfying this third software exploi-
tation end goal enables a significant alteration of
the deployed software product’s functional and
operational performance characteristics.

Regardless of the particular software exploita-
tion end goal to be obtained, the software exploi-
tation process must be defined to base a series of
experiments that will enable the capturing of
measurement data. This software exploitation
process commences when the exploiter acquires
the binary code file that represents the subject for
the reverse engineering activity. For network-
centric computing, this acquisition step is rather
expediently performed and may be no more effort
than locating the particular executable or load file
that will be the subject of subsequent reverse
engineering activities. For commercial software

222 I. Sutherland et al.



Download	English	Version:

https://daneshyari.com/en/article/456293

Download	Persian	Version:

https://daneshyari.com/article/456293

Daneshyari.com

https://daneshyari.com/en/article/456293
https://daneshyari.com/article/456293
https://daneshyari.com/

