
Windows operating systems agnostic memory analysis

James Okolica*, Gilbert L. Peterson

Department of Electrical and Computer Engineering, Air Force Institute of Technology, USA

Keywords:

Memory forensics

Microsoft windows

PDB files

Operating system discovery

Processes

Registry files

Network activity

a b s t r a c t

Memory analysis is an integral part of any computer forensic investigation, providing

access to volatile data not found on a drive image. While memory analysis has recently

made significant progress, it is still hampered by hard-coded tools that cannot generalize

beyond the specific operating system and version they were developed for. This paper

proposes using the debug structures embedded in memory dumps and Microsoft’s

program database (PDB) files to create a flexible tool that takes an arbitrary memory dump

from any of the family of Windows NT operating systems and extract process, configura-

tion, and network activity information. The debug structures and PDB files are incorporated

into a memory analysis tool and tested against dumps from 32-bit Windows XP with

physical address extensions (PAE) enabled and disabled, 32-bit Windows Vista with PAE

enabled, and 64-bit Windows 7 systems. The results show the analysis tool is able to

identify and parse an arbitrary memory dump and extract process, registry, and network

communication information.

ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Memory analysis is an integral part of effective computer

forensics. Since the DFRWSmemory challenge in 2005 (Digital

Forensics Research Workshop, 2005), there has been signifi-

cant research done in improving analysis of memory dump

files (Betz, 2005; Schuster, 2006b; Walters and Petroni, 2007).

Unfortunately, these techniques still rely on knowing char-

acteristics of the operating system a priori. Furthermore, in

most cases, these tools only work on a small number of

operating system versions. For instance, while Volatility has

extensive functionality, it only works on Microsoft Windows

XP SP2 and SP3. What is needed is a tool that works on an

arbitrary memory dump regardless of the operating system

version and patch level.

This paper is a first step in achieving this generalized

functionality. By incorporating the work of Alex Ionescu and

Microsoft’s program database (PDB) files (Microsoft Support)

into a memory analysis tool, the tool is able to identify the

operating system and version of a memory dump from the

family of Microsoft NT operating systems (i.e., Windows NT4,

Windows 2000, Windows Server 2003, Windows XP, Windows

Vista, Windows Server 2008, and Windows 7). The tool then

uses this information to locate the kernel executable and

extract its globally unique identifier (GUID). With the kernel

name and GUID, the tool retrieves the PDB file from Micro-

soft’s online symbol server and uses it to enumerate the key

operating system structures necessary to parse the memory

dump.

The remainder of this paper presents an overview of the

memory analysis work already done and a methodology for

combining these different pieces of memory analysis and

parsing to make a Windows agnostic tool. Finally, the paper

discusses applying the resulting tool to a memory dump from

a 32-bit Windows XP SP3 with physical address extensions

enabled and disabled, 32-bit Windows Vista with physical

* Corresponding author.
E-mail addresses: jokolica@afit.edu (J. Okolica), gpeterson@afit.edu (G.L. Peterson).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6

1742-2876/$ e see front matter ª 2010 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2010.05.007

mailto:jokolica@afit.edu
mailto:gpeterson@afit.edu
http://www.elsevier.com/locate/diin

address extensions enabled, and 64-bit Windows 7. In each

case, the tool identifies the operating system version and

memory layout, extract all of the process and registry infor-

mation (including pages stored in page files and memory

backed files), and extract network communication

information.

2. Background

Live forensics examines the most volatile, and generally the

most recent cyber artifacts. Process activity, configuration

changes, and network communication occur constantly and

by examining volatile memory, the most recent instances of

each of these are captured. Furthermore, the kernel execut-

ables residing on disk may not mirror the code actually

running in memory (particularly if malware programs have

hooked them). Examining the operating systemprograms that

are in memory provides themost accurate picture of what the

operating system is actually doing.

Live response information investigators typically seek

include:

� system data and time,

� logged on users and their authorization credentials,

� network information, connections, and status

� process information, memory and process-to-port

mappings

� clipboard contents

� command history

� services, driver information

� open files and registry keys as well as hard disk images

(Prosise et al., 2003).

While ideally, the method for collecting memory should

not affect the operating system, if no collection method has

been implemented a priori, options are limited. In these cases,

the best methodmay be to use software tools that will impact

the operating system as a part of collecting the image. There

are two distinct approaches: starting a new collection process

(Carvey, 2007) or inserting a collection driver into an existing

kernel process. The traditional software collection method is

to start a new process, such as Madiant’s Memoryze, that does

not use operating system application programmer interfaces

(APIs) or graphical user interfaces (GUI) so that it has less

system impact and is less likely to be subverted by an infected

operating system. However, creating a new process still

creates new process records, object tables, and device tables

as well as allocates space within a portion of main memory.

The alternative is adding a driver to an existing kernel process.

The downside of this method is that it modifies the space for

one of the processes that will be captured. This may later call

into question whether other, unintended changes were made

to that process’ space as well, possibly tainting the results.

There are several tools that parse memory dumps and

extract process information. Two of the early tools that

scanned memory dumps to find processes were Chris Betz’s

memparser (Betz, 2005) and Andreas Schuster’s ptfinder

(Schuster, 2006a). In addition, Brendan Dolan-Gavitt has

developed tools for extracting Windows registry information

(Dolan-Gavitt, 2008). More recently, Aaron Walters and others

have developed Volatility (Walters and Petroni, 2007) which in

addition to finding processes and registry information, also

finds the network and configuration information. Further-

more, Volatility 1.3 parses hibernation files. However, what all

of these tools have in common is that they are limited to

specific versions of specific operating systems, e.g., 32-bit

versions of Windows XP SP2 and SP3. The reason for this is

that since the data structures used by an operating system

change from version to version, new versions of the software

are needed each time. However, Barbarosa and Ionescu have

provided a means of discovering from within a memory

dump, the operating system version that was running

(Barbarosa; Ionescu). We combine this with Schreiber’s

method for analyzing the program database files (Microsoft

Support) generated when Microsoft compiles its code

(Schreiber, 2001a,b) to create a Windows agnostic memory

analysis tool.

3. Methodology

By combining work done by (Barbarosa; Dolan-Gavitt, 2008;

Ionescu; Russinovich and Solomon, 2005; Schreiber, 2001a;

Schuster, 2006a; Walters and Petroni, 2007), it is possible to

take an arbitrary memory dump from one of the Windows NT

family of operating systems (i.e., Windows NT4, Windows

2000, Windows Server 2003, Windows XP, Windows Vista,

Windows Server 2008, and Windows 7) and parse it. This

Windows agnostic approach provides several benefits. First,

memory analysis tools no longer need to be coded to a specific

operating system version and patch level; second, memory

dumps that are acquired without operating system interac-

tion (e.g., via direct memory access) may be parsed without

interacting with either the operating system or a system

administrator. Finally, as new versions and patch levels of

operating systems are released, the existing memory analysis

tools should continue to work. Fig. 1 shows the Windows

agnostic memory analysis process.

First, using the work of Barbarosa and Ionescu,

_DBGKD_DEBUG_DATA_HEADER64, _KDDEBUGGER _DATA64

and _DBGKD_GET_VERSION64 records are found and parsed to

determine whether the dump comes from a 32-bit, 32-bit with

physical address extensions enabled, or a 64-bit operating

system. Using this information (Russinovich and Solomon,

2005), the kernel page directory table base is found. With

this information and (Russinovich and Solomon, 2005), virtual

addresses are parsed into physical addresses. Next, the base

address of the kernel executable and of tcpip.sys are found

from _DBGKD_DEBUG_DATA_HEADER64 directly and via

PS_LOAD ED_MODULE_LIST respectively. By examining the

debug section of these two portable executables (Microsoft

Windows Hardware Developer Central), the globally unique

identifier (GUID) and age are extracted and used to download

the correct program database from Microsoft’s symbol server

(Microsoft Support). The PDB file is then parsed (Schreiber,

2001a), and the exported kernel data structures are extrac-

ted. With these data structures, it is possible to parse the

memory dump without any hard-coded offsets (although the

names of the structures (e.g., _EPROCESS) do still need to be

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) S 4 8eS 5 6 S49

Download English Version:

https://daneshyari.com/en/article/456336

Download Persian Version:

https://daneshyari.com/article/456336

Daneshyari.com

https://daneshyari.com/en/article/456336
https://daneshyari.com/article/456336
https://daneshyari.com

