
Script-templates for the Content Security Policy

Martin Johns

SAP Research, Germany

a r t i c l e i n f o

Article history:

Available online 20 August 2014

Keywords:

Cross-site Scripting

XSS

Content Security Policy

CSP

Secure coding

Web application security

a b s t r a c t

Content Security Policies (CSPs) provide powerful means to mitigate most XSS exploits.

However, CSP’s protection is incomplete. Insecure server-side JavaScript generation and

attacker control over script-sources can lead to XSS conditions which cannot be mitigated

by CSP. In this paper we propose PreparedJS, an extension to CSP which takes these

weaknesses into account. Through the combination of a safe script templating mechanism

with a light-weight script checksumming scheme, PreparedJS is able to fill the identified

gaps in CSP’s protection capabilities.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Cross-site Scripting (XSS) is one of themost prevalent security

problems of the Web. It is listed at the second place in the

OWASP Top Ten list of the most critical Web application se-

curity vulnerabilities (OpenWeb Application Project (OWASP),

2010). Even though the basic problemhas been known since at

least 2000 (CERT/CC, 2000), XSS still occurs frequently, even on

high-profile Web sites and mature applications (Scholte et al.,

2012). The primary defense against XSS is secure coding on the

server-side through careful and context-aware sanitization of

attacker provided data (Open Web Application Project

(OWASP), 2012). However, the apparent difficulties to master

the problem on the server-side have let to investigations of

client-side mitigation techniques.

A very promising approach in this area is the Content Se-

curity Policy (CSP) mechanism, which is currently under

active development and has already been implemented by the

Chrome and Firefox Web browsers. CSP provides powerful

tools to mitigate the vast majority of XSS exploits.

However, in order to properly benefit from CSP’s protection

capabilities, site owners are required to conduct significant

changes in respect to how JavaScript is used within their Web

application, namely getting rid of inline JavaScript, such as

event handlers in HTML attributes, and string-to-code trans-

formations, which are provided by eval() and similar func-

tions (see Section 2.2 for further details). Unfortunately, as we

will discuss in Section 3, all this effort does not result in com-

plete protection against XSS attacks. Some potential loopholes

remain, which cannot be closed by the current version of CSP.

Listing 1 CSP example

Content-Security-Policy: default-src ‘self’; img-

src *;

object-src media.example.com;

script-src trusted.example.com;

1.2. Contribution and paper outline

In this paper, we explore the remaining weaknesses of CSP

(see Section 3) and examine which steps are necessary to fill

the identified gaps for completing CSP’s protection capabil-

ities. In Section 4, we show that the widespread JSONP coding

convention is especially problematic and report on an empir-

ical study that examines how widespread this potential

vulnerability is. Based on our results, we propose PreparedJS,

an extension of the CSPmechanism (see Section 6). PreparedJS

is built on two pillars: A templating format for JavaScript

E-mail address: mj@martinjohns.com.

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/ j isa

j o u rn a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 9 (2 0 1 4) 2 0 9e2 2 3

http://dx.doi.org/10.1016/j.jisa.2014.03.007
2214-2126/© 2014 Elsevier Ltd. All rights reserved.

mailto:mj@martinjohns.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2014.03.007&domain=pdf
www.sciencedirect.com/science/journal/22142126
www.elsevier.com/locate/jisa
http://dx.doi.org/10.1016/j.jisa.2014.03.007
http://dx.doi.org/10.1016/j.jisa.2014.03.007
http://dx.doi.org/10.1016/j.jisa.2014.03.007

which follows SQL’s prepared statement model (see Section

6.1) and a light-weight script checksumming scheme, which

allows fine-grained control over permitted script code (see

Section 6.2). In combination with the base-line protection

provided by CSP, PreparedJS is able to prevent the full spec-

trum of potential XSS attacks. We outline how PreparedJS can

be realized as a native browser component while providing

backwards compatibility with legacy browsers that cannot

handle PreparedJS’s script format. Furthermore,we report on a

prototypical implementation in the form of a browser exten-

sion for Google Chrome (see Section 7). In Section 9 we show

how the basic mechanism can be extended with a lightweight

macro meta syntax to enable flexible script assembly. And

finally, in Section 10 we discuss non-security benefits of Pre-

paredJS in the area of network traffic and caching.

2. Technical background

2.1. Cross-site Scripting (XSS)

The term Cross-site Scripting (XSS) (The webappsec mailing list,

2002) summarizes a set of attacks on Web applications that

allow an adversary to alter the syntactic structure of the ap-

plication’s Web content via code or mark-up injection.

Even though, XSS inmost cases also enables the attacker to

inject HTML or CSS into the vulnerable application, the main

concernwith this class of attacks is the injection of JavaScript.

JavaScript injection actively circumvents all protective isola-

tion measures which are provided by the same-origin policy

(Ruderman, 2001), and empowers the adversary to conduct a

wide range of potential attacks, ranging from session hijack-

ing (Nikiforakis et al., 2011), over stealing of sensitive data

(Vogt et al., 2007) and passwords (Toews, 2012), up to the

creation of self-propagating JavaScript worms.

To combat XSS vulnerabilities, it is recommended to imple-

ment a careful and robust combination of input validation (only

allow data into the application if it matches its specification)

and output sanitation (encode all potential syntactic content of

untrusted data before inserting it into an HTTP response).

However, a recent study (Scholte et al., 2012) has shown, that

this protective approach is still error prone and the quantitive

occurrence of XSS problems is not declining significantly.

2.2. Content Security Policies (CSPs)

Due to the fact, that even after several years of increased

attention to the XSS problem, the number of vulnerabilities

remains high, several reactive approaches have been pro-

posed, which mitigate the attacks, even if a potential XSS

vulnerability exists in a Web application.

Content Security Policies (CSPs) (Stamm et al., 2010) is such

an approach: A Web application can set a policy that specifies

the characteristics of JavaScript code which is allowed to be

executed.1 CSP policies are added to aWeb document through

an HTTP header or a Meta-tag (see Lst. 1 for an example). More

specifically, a CSP policy can:

1. Disallow the mixing of HTML mark-up and JavaScript

syntax in a single document (i.e., forbidding inline Java-

Script, such as event handlers in element attributes).

2. Prevent the runtime transformation of string-data into

executable JavaScript via functions such as eval().

3. Provide a list of Web hosts, from which script code can be

retrieved.

If used in combination, these three capabilities lead to an

effective thwarting of the vast majority of XSS attacks: The

forbidding of inline scripts renders direct injection of script

code into HTML documents impossible. Furthermore, the

prevention of interpreting string data as code removes the

danger of DOM-based XSS (Klein, 2005). And, finally, only

allowing code from whitelisted hosts to run, deprives the

adversary from the capability to load attack code from Web

locations that are under his control.

In summary, strict CSP policies enforce a simple yet highly

effective protection approach: Clean separation of HTML-

markup and JavaScript code in connection with forbidding

string-to-code transformations via eval(). The future of CSP

appears to be promising. Themechanism is pushed intomajor

Web browsers, with recent versions of Firefox (since version

4.0) and Chrome (since version 13) already supporting it.

Furthermore, CSP is currently under active standardization by

the W3C (W3C, 2012).

However, using CSP comeswith a price: Most of the current

practices in using JavaScript, especially in respect to inline

script and using eval(), have to be altered. Making an exist-

ing site CSP compliant requires significant changes in the

codebase, namely getting rid of inline JavaScript, such as

event handlers in HTML attributes, and string-to-code trans-

formations, which are provided by eval() and similar

functions.

3. CSP’s remaining weaknesses

In general, CSP is a powerful mitigation for XSS attacks. If a

site issues a strong policy, which forbids inline scripts and

unsafe string-to-code transforms, the vast majority of all po-

tential exploits will be robustly prevented, even in the pres-

ence of HTML injection vulnerabilities.

However, as we will show in this section, three potential

attack variants remain feasible under the currently stan-

dardized version 1.0 of CSP (W3C, 2012). Furthermore, in

Section 3.4, we will discuss to which degree the proposed

enhancements of CSP 1.1 affect these identified weaknesses.

3.1. Weakness 1: insecure server-side assembly of
JavaScript code

As described above, CSP can effectively prevent the execution

of JavaScript which has been dynamically assembled on the

client-side. This is done by forbidding all functions that

convert string data to JavaScript code, such as eval() or

setTimeout(). However, if a site’s operator implements

1 CSP also provides further features in respect to other HTML
elements, such as images or iframe. However, these features do
not affect JavaScript execution and, hence, are omitted in the CSP
description for brevity reasons.

j o u r n a l o f i n f o rma t i o n s e c u r i t y and a p p l i c a t i o n s 1 9 (2 0 1 4) 2 0 9e2 2 3210

http://dx.doi.org/10.1016/j.jisa.2014.03.007
http://dx.doi.org/10.1016/j.jisa.2014.03.007

Download English Version:

https://daneshyari.com/en/article/457075

Download Persian Version:

https://daneshyari.com/article/457075

Daneshyari.com

https://daneshyari.com/en/article/457075
https://daneshyari.com/article/457075
https://daneshyari.com

