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Preparation of landslide susceptibility map is the first step for landslide hazard mitigation and risk assessment.
The main aim of this study is to explore potential applications of two new models such as two-class Kernel
Logistic Regression (KLR) and Alternating Decision Tree (ADT) for landslide susceptibility mapping at the
Yihuang area (China). The ADT has not been used in landslide susceptibility modeling and this paper attempts
a novel application of this technique. For the purpose of comparison, a conventional method of Support Vector
Machines (SVM) which has been widely used in the literature was included and their results were assessed. At
first, a landslide inventory map with 187 landslide locations for the study area was constructed from various
sources. Landslide locations were then spatially randomly split in a ratio of 70/30 for building landslide models
and for the model validation. Then a spatial database with a total of fourteen landslide conditioning factors
was prepared, including slope, aspect, altitude, topographic wetness index (TWI), stream power index (SPI),
sediment transport index (STI), plan curvature, landuse, normalized difference vegetation index (NDVI), litholo-
gy, distance to faults, distance to rivers, distance to roads, and rainfall. Using the KLR, the SVM, and the ADT, three
landslide susceptibility models were constructed using the training dataset. The three resulting models were
validated and compared using the receive operating characteristic (ROC), Kappa index, and five statistical evalu-
ation measures. In addition, pairwise comparisons of the area under the ROC curve were carried out to assess if
there are significant differences on the overall performance of the three models. The goodness-of-fits are 92.5%
(the KLR model), 88.8% (the SVM model), and 95.7% (the ADT model). The prediction capabilities are 81.1%,
84.2%, and 93.3% for the KLR, the SVM, and the ADT models, respectively. The result shows that the ADT model
yieldedbetter overall performance and accurate results than theKLR and SVMmodels. The KLRmodel considered
slightly better than SVMmodel in terms of the positive prediction values. The ADT and KLR are the two promising
data mining techniques which might be considered to use in landslide susceptibility mapping. The results from
this study may be useful for landuse planning and decision making in landslide prone areas.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Landslides are considered to be one of themost widespread geologic
hazards in many areas of the world and can be defined as a downslope
movement of soil and rock under the influence of gravity (Malamud
et al., 2004). Globally, around 17% of the fatalities occurred due to
landslides with approximately 66 million people living within the
high risk landslide areas (Sassa and Canuti, 2008). According to the re-
port of the International Landslide Centre of the University of Durham
recorded in 2007 (Petley, 2010), China was the most seriously affected

country with 695 landslide-induced deaths, followed by Indonesia
(465), India (352), Nepal (168), and Bangladesh (150). With the devel-
opment of the economics, the urbanization of mountainous areas is
continuing and this leads to the instability of slopes, thus increases the
potential for landslides. Therefore, understanding landslide mecha-
nisms and preventing them from future occurrence are considered as
an important task that may help government, decision makers, and
engineers in slope management and landuse planning (Jaafari et al.,
2014; Pourghasemi et al., 2012b; Pourghasemi et al., 2014; Pradhan,
2013; Tien Bui et al., 2012e; 2013c; Youssef et al., 2015).

Landslide hazard is defined as the probability of a mass movement
taking place in a certain area and in a specified period of time (Varnes,
1984). It means that the procedure of the landslide hazard mapping
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incorporates both the spatial and temporal predictions of landslides and
spatial prediction of landslide hazards that is not taken into account
triggering factors are known as susceptibility analyses. Although
landslide susceptibility map is considered to be the first step in the haz-
ard and risk assessment, themap is accepted as an end product that can
be used in landuse zoning and environmental planning (Manzo et al.,
2012).

Landslides occur due to complex and relate to various factors i.e.
topography, geology, hydrogeological conditions, landuse, vegetation,
and rainfall, producing reliable landslide susceptibility maps which are
not easy (Lee and Pradhan, 2007; Pourghasemi et al., 2012c; Tien Bui
et al., 2012e). Various methods and techniques have been proposed
for mapping landslide susceptibility, such as logistic regression
(Bai et al., 2010; Devkota et al., 2012; Pourghasemi et al., 2013a; Tien
Bui et al., 2011), multivariate regression (Akgun and Turk, 2011;
Chung et al., 1995; Suzen and Doyuran, 2004), discriminant analysis
(Dong et al., 2009), analytical hierarchy process (Ju et al., 2012;
Pourghasemi et al., 2012a), artificial neural network (Choi et al., 2012;
Conforti et al., 2014; Pavel et al., 2011; Tien Bui et al., 2013d; Zare
et al., 2013), neuro-fuzzy (Pradhan et al., 2010; Tien Bui et al., 2012d),
evidential belief function (Nampak et al., 2014; Pradhan et al., 2014;
Tien Bui et al., 2012e), decision tree (Nefeslioglu et al., 2010; Tien Bui
et al., 2012a; Tsai et al., 2013; Yeon et al., 2010), and support vector
machines (Pourghasemi et al., 2013b; Pradhan, 2013; Saito et al.,
2009; San, 2014; Tien Bui et al., 2012a; 2012b; 2015; Xu et al., 2012;
Hong et al. 2015). Although the accuracy of aforementioned methods
is still debated, however, logistic regression, support vector machines,
and ensemble methods are reported to have outperformed the conven-
tional methods (Jebur et al., 2014; Pradhan, 2013; Tien Bui et al., 2013a;
2012a).

The recent development of machine learning and Geographic
Information System has resulted in some new powerful techniques i.e.
Two-class Kernel Logistic Regression (KLR), Alternative Decision Tree
(ADT) with a capability to improve the prediction performance of
models (Maalouf and Trafalis, 2011; Rokach, 2010; Were et al., 2015).
Literature review shows that the KLR and the ADT have seldom been
explored in landslide modeling; therefore an investigation of the two
methods in comparison with conventional methods should be carried
out. Only 2 or 3% of the increment of prediction capability may control
the resulting landslide susceptibility areas and therefore it is highly
sought after to find high performance based models which can accu-
rately predict these areas (Jebur et al., 2014; Mohammady et al., 2012;
Pradhan, 2013; Tien Bui et al., 2014; 2015).

Themain objective of the present study is to explore potential appli-
cation of the KLR and the ADT in landslide susceptibility mapping at
Yihuang area, the Yihuang City of China. The KLR is a kernelized version
of logistic regression thatmaps the original input space into a newhigh-
dimensional feature space using a kernel function, i.e. Radial Basis
Function. Themain improvement of the KLR compared with the logistic
regression is that the KLR has the ability to classify data with non-linear
boundary (Zhu and Hastie, 2001). In addition, a KLR model can be
constructed with very few training instances and can process very
high dimensional data. In the case of the ADT, this is a machine learning
method in which decision trees are combined with the LogitBoost to
generate interpretable classification rules (Holmes et al., 2002). The
main advantages of ADT are that ADT can generate simpler decision-
tree structures and easier-to-interpret classification rules (Freund and
Mason, 1999a). The computation process was carried out using Matlab
7.11, Weka 3.66, and ArcGIS 10.0.

2. Study area and data used

2.1. Study area

The Yihuang area is located in the central of the Jiangxi Province, in
the west of the Wuyishan mountain and the north of the Ganfu plain.

The study area lies between latitude 27°0′N and 27°43′N, and longitude
116°1′E and 116°28′E. It covers an area of about 1944 km2. The altitude
of the area ranges from 45.6 to 1728.4 m above sea level. Around 36% of
the study area has a slope gradient less than 15° whereas areas with a
slope gradient larger than 45° account for 0.3% of the total study area.
Areas fall into the slope category 15°–25° account for 37.8% of the
total study area. Areas with the slope category 25°–35° account for
21% of the study areas and the remaining area falls into the slope
category 35°–45°. More than 36 geologic groups and units are recog-
nized (Table 1). The main lithologies are monzonitic granite, tonalite
diorite, porphyritic moyite, gray brown granulite (Fig. 4).

The study area belongs to a subtropical monsoon climate. According
to the Jiangxi Province Meteorological Bureau (http://www.weather.
org.cn), the average annual rainfall for the period 1960–2012 years is
from 1060 mm to 2660 mm. The average annual temperature is
17.5 °C. The rainy season is from February to September that accounts
for 83.6% of the yearly rainfall. In May and June, the average rainfall
varies between 250 mm and 310 mm per month.

In the Yihuang area, no information about earthquake-induced land-
slides had been reported, thehigh amount of rainfall is considered as the
main triggering factor for the occurrence of landslides (Huang and Li,
2011). According to the statistics of the Yihuang City, a total of 2421
people in the study area are affected by landslides. The damages to
properties are estimated about 3 million USD. However, very few
attempts have been made to forecast their location and prevent their
damages (Lin et al., 2006; Lin et al., 2010; Wu et al., 2014).

Table 1
Lithological classification of the study area.

Category Main lithology Geologic group and unit

A Gray, gray purple quartz
conglomerate, pebbly sandstone,
sandstone

Zishan group; Yunshan group;
Zhongpeng groups

B Granodiorite Xinquan Super unit
Monzonitic granite The Ancient Yin Zhai unit; Huang

Pichao unit
K-feldspar granite Silver Factory Super unit; Chen Fang

unit; Diao Qiao unit; the Li family
unit

Monzonitic, K-feldspar granite Ge Tanshan Super unit; Ge
Xianyuan Unit; Ken former Unit;
Xishan Row unit; Moon shaped
super unit

Monzonitic, K-feldspar granite Jiuxian Decoction; Mufu mountain;
Changshan; Match Yangguan Super
unit, Huang Xie, Xihua Mountain
Super unit

Monzonitic granite Huang Xie; the Xihua mountain;
Changshan;

C Brick red, purple red
conglomerate, pebbly sandstone

Lianhe group; Tanbian group;
Hekou group

D Granulite, schist, marble variable
conglomerate

Hongshan group

E Gray brown granulite clip two
mica schist, quartz schist

Wanyuan group

F Tonalite diorite, porphyritic
granodiorite, granite

Tang Huchao unit; Fu Fangchao
unit; Car Brain unit; High Delta unit

Monzonitic granite Fu Fangchao unit; Soup Huchao
unit; Gaoping unit; Cat Nasal Yin
unit

G Monzonitic granite Triassic granite
K-feldspar granite The Super element; Qingxi Over

unit, Fu Super unit; Tu Qiao Ao unit
Sand, Shale, chert conglomerate
with bottom seam, tuffaceous
sandstone, tuff

Anyuan group

H Dark gray, gray and black
carbonaceous siliceous slate

The Outer Tube group

Fine tonalitic granite diorite
granite gneiss

Middle Cambrian tonalities and
diorite
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