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a b s t r a c t

Fingerprint-based indoor localization has attracted extensive research efforts due to its potential for
deployment without extensive infrastructure support. However, the accuracies of these different systems
vary and it is difficult to compare and evaluate these systems systematically. In this work, we propose a
Gaussian process based approach that takes the radio map and the localization algorithm as an input, and
outputs the expected accuracy of the localization system. With an efficient error estimation algorithm,
many applications such as landmark detection, localization algorithm selection and access point subset
selection can be performed. Our evaluations show that our approach provides sufficient accuracy and can
serve as a useful tool for system evaluation and performance tuning when developing fingerprint-based
indoor localization systems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate indoor localization is the fundamental building block
for mobile pervasive computing. With the proliferation of smart-
phones and the rise of location-based services, indoor localization
has attracted extensive research efforts (Yang et al., 2012; Wang
et al., 2012; Bahl and Padmanabhan, 2000; Youssef and Agrawala,
2005; Shen et al., 2013; Rai et al., 2012; Haque, 2014; Zhang and
Wong, 2012).

Among different categories of wireless indoor localization
approaches, fingerprint-based indoor localization (Bahl and
Padmanabhan, 2000) is one of the most popular due to the
widespread availability of WiFi access points (AP). WiFi finger-
prints consist of the received signal strength (RSS) of WiFi APs, and
are used as unique signatures of different locations to determine
the location of mobile devices in the localization process. State-of-
the-art research on fingerprint-based indoor localization either
focuses on improving the accuracy of the location estimation
(Youssef and Agrawala, 2005; Liu et al., 2012; Sun et al., 2013), or
reducing the time and effort in constructing the fingerprint data-
base (Yang et al., 2012; Wang et al., 2012; Shen et al., 2013; Luo

et al., 2014). While all these approaches have addressed various
shortcomings in existing indoor localization systems, the config-
urations of these systems vary. Each of these localization systems
is evaluated in settings with different physical layout and envir-
onmental effects, making it difficult to compare and evaluate them
systematically. One of the key objectives of our work is to make
systematic comparison feasible.

The main idea of this paper is as follows: given a set of radio
signal fingerprints collected, a Gaussian process (GP) (Rasmussen,
2006) approach is used to model the signal distribution of access
points that cover the area of interest. Using the signal distribution
model derived, random sampling is performed to simulate the
collection of fingerprint values collected at each location of inter-
est during localization. Given a particular localization algorithm,
the mapped location in the system can be determined. The average
localization error of each location in the area of interest can now
be estimated.

By decoupling radio map construction and localization, and
with the ability to estimate the accuracy of the localization system
over the area of interest, our system can achieve the following:

� It is now possible to systematically compare different localiza-
tion algorithms under different environmental settings.

� Landmarks, or locations with high localization confidence, can
be easily identified and used to further improve the accuracy.

� The set of APs that can provide better accuracy for the entire
area of interest can be identified, as opposed to using all APs
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available or a set of APs that may be good locally but not for the
entire area.

To the best of our knowledge, this paper is the first systematic
study on accuracy awareness of fingerprint-based localization
systems. We believe that it has the potential to be integrated into
future fingerprint-based localization systems to provide direct
feedback about the accuracy levels of the system in use, and
guidelines to achieve better accuracy.

To validate our approach, we evaluate the system in two dif-
ferent indoor environments covering more than 300 m2. In both
environments, point-level, region-level and floor-level error esti-
mation are evaluated with 3 different localization metrics and
more than 20,000 testing data points. For point level accuracy, the
evaluation results show that the difference between GP estimation
and ground truth is small, demonstrating that accuracy awareness
provides an accurate and practical assessment to fingerprint-based
localization systems. In addition, we are able to successfully
identify 5 landmarks with high localization confidence in the area
localized and find the minimum AP subsets that should be selected
to achieve better accuracy.

The rest of the paper is organized as follows. We discuss the
Gaussian process for modeling signal strength of access points in
Section 2. Section 3 explains the concepts, algorithms and appli-
cations for point-level, region-level and floor-level accuracy
awareness. The evaluation results are given in Section 4 and
related works are discussed in Section 5. Finally, we conclude in
Section 6.

2. Preliminaries

The received signal strength of the wireless access point at each
location has been characterized in the literature as a Gaussian
distribution (Haeberlen et al., 2004; Youssef and Agrawala, 2005;
Kaemarungsi and Krishnamurthy, 2004; Ferris et al., 2007). To
model the signal strength propagation continuously over the
whole field, Gaussian process (GP) (Rasmussen, 2006) is used to
capture the spatial correlation existed in signal strength distribu-
tion (Ferris et al., 2006, 2007; Xu et al., 2014). Gaussian process is a
Bayesian non-parametric model that performs non-linear regres-
sion on the training data D¼ fðxi; yiÞj i¼ 1;…;ng to estimate the
distribution over functions f that generate the data. That is,

yi ¼ f ðxiÞþε ð1Þ
where xiARd is a d dimensional input value, yi is the observation
value, and ε is a zero-mean noise termwith known covariance σn2.
Gaussian processes allow spatial correlation between measure-
ments and are fully specified by GP priors. Therefore, function f �
GPðμðxÞ; kðx; x0ÞÞ is a GP with mean function μðxÞ and covariance
function, or kernel, kðx; x0Þ, where

μðxÞ ¼ E½f ðxÞ� ð2Þ

kðx; x0Þ ¼ E½ðf ðxÞ�μðxÞÞðf ðx0Þ�μðx0ÞÞ� ð3Þ
The choices of the kernel function characterize the property of GP,
and the most widely used kernel is the squared exponential func-
tion (Ferris et al., 2007):

kðx; x0Þ ¼ σ2
f exp � 1

2l2
jx�x0 j 2

� �
ð4Þ

where σf2 is the variance of observation value and l is the length
scale that decides how strongly the correlation between different
points drops off (Ferris et al., 2007). Assuming additive indepen-
dent identically distributed Gaussian noise ε and noise covariance
σn2 (Rasmussen, 2006), the covariance between observations

becomes:

covðf ðxÞ; f ðx0ÞÞ ¼ kðx; x0Þþσ2
nδx;x0 ð5Þ

Here δx;x0 ¼ 1 if x and x0 are the same point, and 0 otherwise. After
the prior is specified, the Gaussian process posterior is obtained
from the training data D. Therefore with GP priors and training
data, prediction of the unobserved function value at any arbitrary
location xn can be made (Xu et al., 2014):

μxn jD ¼ μxn þΣxnDΣ
�1
DD ðyD�μDÞ ð6Þ

Here μxn , μD are the mean values of the data points and are specified
by the GP prior μðxÞ. ΣxnD is the 1� n vector of covariance between
xn and the n training data D, and Σ �1

DD is the n� n covariance matrix
of the training data. Both ΣxnD and Σ�1

DD are calculated using Eq. (5).
With this formulation, the observation value at any arbitrary location
in the field can be predicted conditionally on the training data.

To model the signal strength distribution of the access points
covering a certain area, input x¼ ðxh; xvÞ is a two dimensional vector
specifying the horizontal and vertical coordinates of the location. The
observation value yi is the signal strength received at the given
location. Note that the input data D here can be obtained from the
fingerprint database, or radio map, which is generally required and
constructed by any fingerprint-based localization systems in the
offline calibration phase in order to perform localization.

The radio map contains a sequence of records ðx; fpÞ which
associates wireless fingerprints fp to each location x. Finger-
print fp¼ ðBSSIDi; ri j i¼ 1;…; kÞ consists of signal strength read-
ings r of all k WiFi BSSIDs (MAC addresses of access points)
observable. Hence for each BSSID in the system, the training
data D¼ fðxi; riÞj i¼ 1;…;ng is available. With the availability of
the training data, Gaussian processes can be applied to char-
acterize the signal strength distribution of the whole area.

The squared exponential kernel in Eq. (4) assumes the same
length scale in all input dimensions. However, in practice the effect
of horizontal or vertical dimensions on signal strength can be
different due to the physical settings. For example, there can be a
wall in the horizontal dimension blue, resulting in the fast decay of
signal strength in only this dimension. To model this effect, we use
separate length scale lh and lv in each dimension in modeling the
signal strength:

kðx; x0Þ ¼ σ2
f exp �1

2
ðxh�x0hÞ2

l2h
þðxv�x0vÞ2

l2v

 !" #
ð7Þ

The mean function and the covariance function characterize
the signal strength model. To handle the mean shift problem, we
set mean function μðxÞ ¼ �100, so that those locations that are not
able to receive any signal strength of certain access point will
converge to mean �100 dbm in its model. The covariance function
contains four parameters θ¼ 〈σn;σf ; lh; lv〉.

One advantage of the Gaussian process is that it is a non-
parametric model, and therefore no parameters need to be spe-
cified beforehand: all parameters are learned from the training
data by maximizing the log likelihood using the conjugate gra-
dient decent algorithm (Ferris et al., 2006). Fig. 1(a) shows the GP
estimation of the mean signal strength value for one access point
covering a 20� 12 m2 indoor area. Note that even though the GPs
also provide uncertainty measurement for Eq. (6) (e.g., the var-
iance of the predicted μxn jD (Ferris et al., 2006)), it only measures
the “spatial uncertainty” of the predicted mean. This uncertainty is
different from the “temporal uncertainty”, which is the variance of
signal strength at each location at various times. The temporal
uncertainty provides the likelihood measurement for the signal
strength. To model temporal uncertainty, we treat variance as the
second variable and train a second GP for the same access point
using mean function μðxÞ ¼ 0 and the same covariance function (7)
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