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ARTICLE INFO ABSTRACT
Article history: Many environmental scientists are analysing spatial data by geostatistical methods and interpolating from sparse
Received 4 June 2013 sample data by kriging to make maps. They recognize its merits in providing unbiased estimates with minimum
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variance. Several statistical packages now have the facilities they require, as do some geographic information sys-
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tems. In the latter kriging is an option for interpolation that can be done at the press of a few buttons. Unfortu-
nately, the ease conferred by this allows one to krige without understanding and to produce unreliable and

Ié?;‘;vgt?:t‘i s even misleading results. Crucial for sound kriging is a plausible function for the spatial covariances or, more wide-
Sampling ly, of the variogram. The variogram must be estimated reliably and then modelled with valid mathematical func-
Variogram tions. This requires an understanding of the assumptions in the underlying theory of random processes on which
Model fitting geostatistics is based. Here we guide readers through computing the sample variogram and modelling it by
Trend weighted least-squares fitting. We explain how to choose the most suitable functions by a combination of
Kriging graphics and statistical diagnostics. Ordinary kriging follows straightforwardly from the model, but small changes
in the model function and its parameters can affect the kriging error variances. When kriging is automated these
effects remain unknown. We explain the choices to be made when kriging, i.e. whether the support is at points or

over blocks, and whether the predictions are global or within moving windows.
© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Daniel Krige, the doyen of geostatistics, died earlier this year at the
grand age of 93. Early in his career he developed empirically statistical
methods to predict ore grades from spatially correlated sample data in
the gold mines of South Africa (Krige, 1951, 1966). In the 1960s his ap-
proach was formalized by Matheron (1963, 1965), and the term
‘kriging’ was coined in his honour. In the two decades that followed en-
vironmental scientists — pedologists, hydrologists, geologists, and atmo-
spheric scientists, to name a few - saw the merit of this technology
in their own fields (e.g. Burgess and Webster, 1980; de Marsily and
Ahmed, 1987; Gajem et al, 1981; McBratney et al., 1982; Vauclin
et al,, 1983; Russo, 1984; Oliver and Webster, 1987). Now kriging is ap-
plied widely and with increasing sophistication in petroleum engineer-
ing, mining and geology, meteorology, hydrology, soil science, precision
agriculture, pollution control, public health, fishery, plant and animal
ecology, and remote sensing. Kriging has become a generic term for sev-
eral closely related least-squares methods that provide best linear unbi-
ased predictions (BLUP) and also some non-linear types of prediction. It
is a major advance over the mathematical methods of interpolation
common in the first half of the 20th century.

Environmental surveys are almost always based on samples, but in
general the measurements represent a continuum in space from
which the sample has been drawn. Most analysts and their clients
want to know what values are likely at intervening places. Kriging en-
ables them to predict those values optimally, i.e. without bias and
with minimum variance; hence its popularity.

Initially practitioners had to write their own code for
geostatistical analysis; they had to have understanding of numerical
analysis to program the methods. In the last 20 years the situation
has changed dramatically with powerful software that has become
widely and cheaply available in the public domain, such as GSLIB
(Deutsch and Journel, 1998), gstat (Pebesma, 2004; Pebesma and
Wesseling, 1998) and GenStat (Payne, 2013). Gstat in particular is
now accessible through R free of charge (see http://cran.r-project.
org/web/packages/gstat/index.html). Several geographic informa-
tion system (GIS) packages also have facilities for geostatistical anal-
ysis, and kriging has become one of the favoured interpolation
routines, if not the favoured one. The ‘Spatial Analyst’ component
of ArcGIS (3D-Analyst and Geostatistical Analyst Tool, ArcGIS ver-
sion 9.2) is especially congenial with attractive graphics. It has en-
couraged many environmental scientists to use geostatistics, and
specifically ordinary kriging (see Section 4), for interpolation and
mapping. With kriging in its various forms, environmental scientists
can make spatial predictions at any location between their observa-
tion points without bias and take proper account of the errors, which
are minimized and also estimated together with the predicted
values. Unfortunately, the ease with which modern software can be
used means that anyone can produce maps by kriging without un-
derstanding what happens between the data and the resulting
maps. At the press of a few buttons on a computer one can interpo-
late from scattered data and display the result as a map. The software
becomes a ‘black box’ in which, somehow, a variogram is computed
and values from it are inserted into kriging equations without any
intervention or assessment by the user.

There are several textbooks on geostatistics (e.g. Chilés and Delfiner,
2012; Goovaerts, 1997; Olea, 1999), including our own (Webster and

Oliver, 2007). Judging from the numerous scripts we are asked to read
for this journal and others, however, we have the strong impression
that these books do not provide the succinct guidance that authors
seek to practice geostatistics wisely. Most authors seem to cull their
knowledge from journal articles, many of which are sketchy or mislead-
ing and some that are actually wrong.

Our purpose here is deliberately educational; it is to guide investiga-
tors, in particular those intent on publishing records of their research in
Catena, to use the basic geostatistical tools correctly and with under-
standing, and to avoid the pitfalls that lead to worthless results and mis-
leading claims and to scientific papers that require major revision based
on fresh analysis and often more data.

Many environmental scientists who use geostatistical packages
have maps as their ultimate goals. But kriging for interpolation is
only the penultimate step in a chain that begins with sampling and
proceeds through the exploration and screening of data, perhaps
transformation, crucially the estimation and modelling of one or
more variograms, and ends with graphic display. Here we look at
each of these steps and the assumptions required to implement
them. We also tell intending authors what they should report so
that readers know and could repeat what they have done. We intro-
duce some algebraic notation for brevity, but we have placed most of
the essential equations in Appendix A so as not to break the flow of
the narrative. You can find them all with explanations in the text-
books cited above.

We are soil scientists, and we set the scene and illustrate the proce-
dures with examples in soil survey. There are close analogies in other
branches of land research, and scientists in those fields should find our
guide equally apt.

2. Random processes

Features of the environment, such as soil, are the product of many
interacting physical, chemical and biological processes. These processes
are physically determined, but their interactions are so complex that the
variation appears to be random. This complexity and incomplete under-
standing of the processes means that a deterministic or mathematical
solution to quantify the variation is out of reach at present. The logical
solution required a leap of imagination by Matheron (1965) in his sem-
inal thesis to treat the variation as though it were random. Let us first
translate this idea of a random property into a mathematical one,
which we call a random process. We can formalize it in the notation
that has become conventional as follows.

1. The value of a property, say z, at any place x, equivalent to x1,x, in two
dimensions, and denoted by z(x) is one of an infinity of values of a
random variable Z(x) at that place. We call it a ‘realization’ of the
process.

2. The set of random values at all such places, again infinite in number,
in a region is a random process, and also denoted Z(x).

3. The random variable is spatially correlated at some scale.

Variables, such as the heights of water tables, the concentrations of
elements in soil, air temperatures and rainfall, for example, are regarded
as spatial random variables. For each, however, we have only a single re-
alization. Consequently, we cannot compute statistics for the realization
or draw inferences from it. Inference requires many realizations, and so
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