
A recursive Byzantine-resilient protocol

Chien-Fu Cheng a,b,n, Kuo-Tang Tsai b

a Department of Computer Science and Information Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui District,
New Taipei City 25137, Taiwan
b Graduate Institute of Networking and Communication, Tamkang University, No. 151, Yingzhuan Road, Tamsui District, New Taipei City 25137, Taiwan

a r t i c l e i n f o

Article history:
Received 6 December 2013
Received in revised form
9 September 2014
Accepted 31 October 2014
Available online 12 November 2014

Keywords:
Distributed system
Fault-tolerant
Consensus problem
Byzantine fault

a b s t r a c t

To solve the consensus problem, the classical consensus protocols require tþ1 rounds of message
exchange to tolerate t faulty processors, where t¼⌊(n�1)/3c and n is the total number of processors in
the network. With advancement of software and hardware technologies in recent years, the “actual
number of faulty processors” (fact) in a network is usually smaller than t, and fact{t. However, the
classical consensus protocols still need to execute tþ1 rounds of message exchange even if there are no
faulty processors in the network. To address this issue, we propose a new consensus protocol called
Recursive Byzantine-Resilient protocol (RBR protocol). We integrate the concepts of parallel computing,
grouping, hierarchy and recursion into this protocol to reduce its time and space complexity. Specifically,
the RBR protocol can solve the consensus problem in the presence of 2h(⌊((n/4h)�1)/3cþ1)�1
Byzantine faulty processors, where h¼⌊(lg(n)�2)/2c. The time complexity and space complexity of
RBR protocol are O(lg(n)) and O(nklg(n)) respectively. The results reveal that RBR protocol outperforms
previous protocols in terms of time complexity and in terms of space complexity. In this paper, we also
discuss how to enhance the fault-tolerance capability of RBR protocol in achieving consensus through
repetitive execution of the protocol when the number of Byzantine faulty processors is greater than
2h(⌊((n/4h)�1)/3cþ1)�1.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The consensus problem plays a key role in the design of a fault-
tolerant distributed system (Silberschatz et al., 2013). The goal of
consensus protocols is to make each fault-free processor reach a
common consensus value (Fischer et al., 1985; Neiger, 1994; Pease
et al., 1980; Siu et al., 1996). With a common consensus value, many
important distributed services/applications can be carried out.
Some examples are the implementation of practical intrusion-
tolerant systems (Colon Osorio, 2007; Correia et al., 2006), the
implementation of the web services atomic transactions over the
Internet (Zhang et al., 2012), group membership service (Guerraoui
and Schiper, 2001), file consistency problem of file-sharing in P2P
network (Amir et al., 2010; Shen, 2010) and the cruise control
(Correia et al., 2008).

The original consensus protocol was proposed by Pease et al.
(1980). The consensus protocols proposed by Fischer et al. (1985),
Neiger (1994) and Siu et al. (1996) were all based on the original
consensus protocol, and they have the same execution time (time
complexity) and the number of messages required (space complexity)

as the original consensus protocol. Fischer et al. (1985) show that
consensus cannot be solved deterministically in completely asynchro-
nous distributed systems, even in the presence of only one crash
processor. Neiger (1994) included a strong validity constraint (Strong
Validity: the output value of each fault-free processor must be the
initial value of some fault-free processors) in the original consensus
protocol to propose a new consensus protocol. Siu et al. (1996) pro-
posed a consensus protocol to solve the consensus problemwith dual
failure modes. Their protocol was to improve the system's fault
tolerance by classifying faults into Byzantine fault and dormant fault.

We call a consensus protocol a t-Resilient algorithm, where t is a
threshold on the number of potential failures. The algorithm is
correct as long as no more than t processors fail. Most of the previous
consensus protocols assume that the number of fallible processors in
the network is t¼⌊(n�1)/3c to design a t-Resilient algorithm (Fischer
et al., 1985; Neiger, 1994; Pease et al., 1980; Siu et al., 1996). The
number of rounds of message exchange of these consensus protocols
is tþ1. The time complexity and space complexity of these algo-
rithms are denoted as O(n) and O(nn) respectively, where n is the
total number of processors in the network (nZ4). The term round1 is

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2014.10.010
1084-8045/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: Department of Computer Science and Information
Engineering, Tamkang University No. 151, Yingzhuan Road, Tamsui District, New
Taipei City 25137, Taiwan.

E-mail address: cfcheng@mail.tku.edu.tw (C.-F. Cheng).

1 A round is defined as follows: (1) Sends messages to any set of processors;
(2) Receives messages from this round; and (3) Does local processing (Neiger,
1994).

Journal of Network and Computer Applications 48 (2015) 87–98

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2014.10.010
http://dx.doi.org/10.1016/j.jnca.2014.10.010
http://dx.doi.org/10.1016/j.jnca.2014.10.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.10.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.10.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.10.010&domain=pdf
mailto:cfcheng@mail.tku.edu.tw
http://dx.doi.org/10.1016/j.jnca.2014.10.010

used to compute the number of message exchanges. More precisely,
the consensus problem is defined by the following three properties:
(1) validity: if the initial value of all processors is vi, then all fault-free
processors shall agree on vi; (2) consensus: all fault-free processors
agree on a common value; (3) termination: every fault-free processor
eventually decides.

With advancement of software and hardware technologies in
recent years, the actual number of faulty processors (fact) in a
network is usually smaller than t¼⌊(n�1)/3c. In practice, fact is
usually small, and fact{t. Given the probability of faulty processors
in modern networks is generally smaller than 1/3, using previous
t-Resilient algorithms (1/3 processors are fallible) to calculate the
consensus value will cause a waste of time on unnecessary rounds
of message exchange. To enhance the performance of consensus
protocols, recent researchers have attempted to propose the early
stopping algorithm for the consensus problem (Krings and Feyer,
1999). The feature of the early stopping algorithm is that it
determines the sufficiency of messages collected for earlier termi-
nation of message exchange. The number of rounds of message
exchange of early stopping algorithm ismin{factþ2, tþ1}, where fact
is the actual number of Byzantine faulty processors in the network.
Despite the effectiveness of the early stopping algorithm in addres-
sing time and space complexity, there may be other ways to further
reduce the time and space complexity of consensus protocols.
Therefore, in this study, we propose a new consensus protocol
based on the concepts of parallel computing, grouping, hierarchy
and recursion for networks where the probability of faulty proces-
sors is smaller than 1/3. The proposed protocol is called Recursive
Byzantine-Resilient protocol (RBR protocol). The time complexity
and space complexity of RBR protocol are O(lg(n)) and O(nklg(n))
respectively. Results indicate that RBR protocol is better than
previous protocols (Fischer et al., 1985; Krings and Feyer, 1999;
Neiger, 1994; Pease et al., 1980; Siu et al., 1996) both in terms of
time complexity and in terms of space complexity.

This paper consists of seven sections, and the remainder is
organized as follows. Section 2 describes the system model and
problem formulation. Section 3 describes the concept and approach
of the proposed protocol. Section 4 presents the proposed protocol.
Section 5 shows the correctness and complexity of the proposed
protocol. Section 6 discusses how to enhance fault-tolerance cap-
ability of the proposed protocol. Finally, the conclusion is drawn in
Section 7.

2. System model and problem formulation

In previous literature, Fischer et al. (1985) have shown that
consensus cannot be solved deterministically in completely asyn-
chronous distributed systems2, even in the presence of only one
crash processor. Therefore, in the most of the consensus problem
(Fischer et al., 1985; Neiger, 1994; Pease et al., 1980; Siu et al., 1996),
processors are fully connected by reliable channels in synchronous
networks. In this study, the consensus problem is also considered in
a synchronous fully connected network with reliable channels. In
such a network, the bounds on the processing and communication
delays of fault-free processors are finite, and processors are con-
nected to each other directly (Baldoni et al., 2010; kamil et al., 2010).
It is assumed that fallible processors have the most serious
Byzantine fault in this study. When a Byzantine fault occurs, the
processor may respond in all kinds of unpredictable ways. In the
worst case, the Byzantine faulty processors may conspire with other
faulty processors (Bessani et al., 2009; Biely and Hutle, 2011;

Zdarsky et al., 2012). The parameters of our system model are listed
as follows:

� P is the set of processors in the network, where P¼{p1, p2,…,
pn,} and n¼ |P|.

� H is the set of fault-free processors in the network, where
HDP.

� f is the number of tolerable Byzantine faulty processors in the
network, where F is the set of Byzantine faulty processors,
FDP and f¼ |F |.

� V(p) is the initial value of processor p.
� D(p) is the consensus value of processor p.
� T is the execution time of the proposed protocol.
� M is the amount of messages generated.

As aforementioned, the goal of consensus protocols is to make
each fault-free processor obtain a common consensus value. It is
better that the number of rounds of message exchange and the
amount of message generated are fewer. Hence, we set our obj-
ective function as expressed in Eqs. (G1)–(G3). Besides, Eq. (C1) is
used to limit the initial value of each processor p; Eq. (C2) is used
to limit the number of Byzantine faulty processors in the network.

DðpÞ ¼DðqÞ; 8p; qAℋ; paq: ðG1Þ

minimize T ðG2Þ

minimizeℳ ðG3Þ
Subject to:

VðpÞAf0;1g; 8pAℋ ðC1Þ

f r2hð⌊ððn=4hÞ�1Þ=3cþ1Þ�1; where h¼ ðlgðnÞ�2Þ=2� � ðTheorem 1Þ
ðC2Þ

3. The concept and approach of the proposed protocol

In this study, we propose the Recursive Byzantine-Resilient
protocol, RBR protocol in short, to solve the consensus problem
with Byzantine faulty processors in the synchronous fully con-
nected network. RBR protocol is designed on the basis of the
classical consensus protocols (Fischer et al., 1985; Neiger, 1994;
Pease et al., 1980; Siu et al., 1996). It integrates the concepts of
grouping, recursion and hierarchy, and uses parallel computing to
reduce the execution time and the amount of messages required to
achieve consensus.

Theorem 1. There are hþ1 levels in the network which has n
processors, where h¼⌊(lg(n)�2)/ 2c.

Proof: The RBR protocol puts 4–5 processors/subgroups in a
group (in each grouping operation, at most 3 groups will have
5 processors/subgroups). Given a network with n processors, the rec-
ursive grouping operation must satisfy the constraint of n/4hZ4.
After transposition, we can get h ¼⌊(lg(n)�2)/2c.

The grouping method of RBR protocol is as follows: RBR protocol
puts 4–5 processors/subgroups in a group (at most 3 groups have
5 processors/subgroups). In a network with n processors, there will
be hþ1 hierarchies (numbered from 0, h¼⌊(lg(n)�2)/2c as shown in
Theorem 1). Thus, if n is between 4 and 15, h will be 0 (h¼⌊(lg(n)�
2)/2c¼0, n¼4–15). In this case, grouping is not applicable, because
the grouping result will not meet the requirement of the consensus
protocol that the number of groups must be greater than or equal to
4 (Fischer et al., 1985; Neiger, 1994; Pease et al., 1980; Siu et al., 1996).
If nZ16, h will be greater than or equal to 1 (h¼⌊(lg(n)�2)/2cZ1,
nZ16), and grouping is applicable. RBR protocol groups processors
based on a recursive method, which is to group processors, from one

2 The features of completely asynchronous distributed systems are: (1) No
access to real-time clocks; and (2) No assumption on communication delays and
relative speed of processors (kamil et al., 2010).

C.-F. Cheng, K.-T. Tsai / Journal of Network and Computer Applications 48 (2015) 87–9888

Download English Version:

https://daneshyari.com/en/article/457185

Download Persian Version:

https://daneshyari.com/article/457185

Daneshyari.com

https://daneshyari.com/en/article/457185
https://daneshyari.com/article/457185
https://daneshyari.com

