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Soil is usually presented as a complex dynamical system. Nevertheless, evidences based on the theoretical
background of complex system physics are still scarce. The main objective of this work was to search for
chaotic parameters using some basic concepts of nonlinear dynamical system theory with spatial series of
soil properties. Three spatial series consisting of 1000 data point transects were used. We selected horizontal
and vertical electrical conductivity (ECh and ECv, respectively) and gravimetric water content from a Vertisol
(Typic Hapludert) under rice cropping. Each spatial transect was oriented from South to North with 1-m
spacing. It was used the TISEAN Software Package (a public domain software available at http://www.
mpipks-dresdren.mpg.de/~tisean) for deriving nonlinear parameters from spatial series. We found
interesting evidences of chaotic behaviour as maximal Lyapunov exponents were all positive. They ranged
from λm=0.129 for water content to λm=0.219 for ECv (filtered series in each case). Original (unfiltered),
filtered, and surrogate spatial series confirmed these findings as they also showed positive Lyapunov
exponents. All the spatial series showed a higher deterministic component (|κ|N0.9 in most cases). The
Lyapunov range of correlation (ρ) was within the limits 4.56 m (ECv) to 7.75 m (gravimetric water content) as
usually reported from geostatistical investigations. Future works based on dynamical system theory will
advance our knowledge on spatial variability of important soil properties and the emergence of deterministic
and/or stochastic components.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The interpretation of soil as a complex, nonlinear system has been a
key issue for understanding spatio/temporal soil evolution. The term
complex system is very difficult for fitting to open media (e.g. soils)
where many variables and state factors are present. As open systems
they are probably far from equilibrium. Soils are basic components of
ecological systems. However, analysing soils as nonlinear physical
systems would be always limited to few variables collected within a
narrow range of spatial or temporal scales. Many papers have been
published discussing howa novel physical theory (Nonlinear Dynamical
System Theory) can explain and/or predict the nonlinear evolution of
soil system (Culling,1988), ecological data (Turching andTaylor,1993) or
soil formation (Phillips,1998). The extrapolation of time series methods
to investigate spatial series is not new in soil and related sciences (Pike
and Rozema, 1975). Spectral analyses (e.g. Fast Fourier Transform)
conducted on spatial series of soil properties have been used for
computing fractal dimensions. This assumes an equivalence between
timeand spatial series. This sort of equivalencehas beenusedbyOhimya

(1991), Kemblowski and Chang (1993) and Pan and Lu (1994) for
estimating fractal dimensions from unidirectional transects. However,
the explicit use of chaos theorymethodology is less reported. Inpractical
terms, long time series are easier to collect than spatial series. Xie and
Chen (2004) have found positive Lyapunov exponents from spatial
series of gold grade and concluded that the evolution of ore-forming is a
dynamical process with chaotic evolution.

The search for nonlinear dynamics usually involves deterministic
forms of nonlinear differential equations. Phillips (2002, 2008) has
called the attention on the need to develop hypotheses from nonlinear
theory which are testable with field observations. Some recent projects
such as TISEAN (Hegger et al., 1999) allow nonlinear analyses directly
from spatial and/or temporal series of empirical data. This could be a
valuable tool for fresh soil studieswheremedium to large spatial and/or
time series of soil data are available. Like a time series, a spatial series is a
sequence of scalars representing soil property values as a function of its
spatial position (independent variable). The variability pattern of a soil
property along a given direction could be a stochastic or a deterministic
function of the measurement location. That pattern variation could be
associated to the nonlinear response of many interacting variables
within soil system. Kantz and Schriber (2003) consider that theoretical
arguments on chaotic dynamics also hold for physical quantities
measured as a function of their spatial distance. However, one has to
consider three situations. First, each physical measurement reveals the
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effect of an underlying dynamics, second, each univariate spatial series
represents a dynamical sub-system (e.g. near soil surface salt distribu-
tion) and third, the spatial dynamics of soil properties occurs within
uniformly managed fields (Timlin et al., 1998). Under these considera-
tions, one could hypothesize that dynamical system concepts allow to
search for chaotic invariants from spatial series of soil data. The main
objective of this work was to search for chaotic parameters using some
basic concepts of nonlinear dynamical system theory with spatial series
of soil properties.

2. Theoretical background

There are two basic ways for chaos studies: first, solving nonlinear
partial or ordinary differential equations for deriving chaotic parameters
or attractors (e.g. Lyapunov exponents or fractals) (Lorenz, 1963) and
seconddetecting chaotic dynamics directly from time series (Abarbanel,
1996; Kodba et al., 2005). A dynamical system is usually observed as a
function of time. However, at a first glance there is no restriction for
exploring it as a function of spatial coordinates. Xie and Chen (2004)
have used this theoretical approach with spatial series of gold grade.
That is, there is no mathematical constrain between a time series (e.g.
meteorological time series) and a spatial one (for instance, a unidirec-
tional transect of soil data collected at equal spacing intervals).

In the present study we managed three relevant concepts
commonly used within the rationale of nonlinear analysis. They
were surrogate data, minimal embedding delay (spatial lag delay)
determination after averaged mutual information estimation,
embedding dimension (m) determination after fraction of false
nearest neighbors calculation and estimation of maximal Lyapunov
exponent. In addition, each considered spatial series was subjected to
a determinism test. Themethod of surrogate data has beenpreviously
used for nonlinearity tests (Theiler et al., 1992; Schreiber and
Schmitz, 1996; Chakraborty and Roy, 2006). The basic point is to
formulate a null hypothesis (e.g. the spatial series of a soil property
was generated by a Gaussian stochastic process) and then trying to
reject that hypothesis by comparing results for the data set to
corresponding realizations of the null hypothesis (Hegger et al.,
1999). As an alternative, the method of surrogates rescales to the
exact values of the data and the Fourier Transform is taken to the
amplitudes derived from the original data set. The correspondence
between surrogates and the original data either tends to zero as the
number of iterations increases or converges to a finite value acting as
an uncertainty threshold. That is, surrogates are treated as random
data sets resembling the same autocorrelation structure as the
original series.

The concept of mutual information (MI hereafter) was introduced
by Fraser and Swinney (1986) for estimating an appropriate time lag
value. In our case the mutual information between yi and y(i+ x)
quantifies the information at state y(i + x) under the assumption that
state yi is known. The rationale presented by Fraser and Swinney
(1986), adapted to the present study, is as follows. Given a spatial
series {y0,y1,y2,…,yi,…,yn} with minimum (ymin) and maximum (ymax)
values one computes the absolute difference |ymax−ymin|, then this
difference is partitioned into k equally sized intervals, with j as large
as a possible integer number, then:

MI = −
Xj

h = 1

Xj

k = 1

Phdk xð Þ ln Ph;k xð Þ
PhPk

ð1Þ

where Ph and Pk are the probabilities that the variable takes a value
within the h-th and k-th grids, respectively, and Ph.k(x) would be the
joint probability that yi is in the h grid and yi+ x is in the k grid. The case
Ph,k(x)=PhPk implies no correlation between yi and yi+ x (MI(x)→0). In
general, the firstminimumofMI(x) versus x defines a suitable value for
the spatial lag (x). In addition, we also considered the structure of the
autocorrelation function corresponding to each spatial series.

The false nearest neighbor is a geometrical method allowing a
determination of the minimal embedding dimension (m) or the
numberof active degrees of freedomof the system (Kennel et al.,1993).
Its implementation allows one to find a minimal spatial separation of
valid neighbors (Hegger et al., 1999). One needs to contruct a vector
sequence p

Y
(i)={yi,yi + x,yi +2x,…,yi+ (m−1)x}, where x is the embedding

delay (spatial lag) (Takens, 1981) within the m-dimensional embed-
ding space, after that a neighbour p

Y
(j) is found such that |p(i)−p(j)|bδ,

where δ is a small constant of the order of the standard deviation of
the data. A normalized distance Γi between the (m+1)th embedding
coordinate of points p(i) and p(j) could be computed:

C ið Þ = jyi + mτ − yj + mτ j
jp ið Þ − p jð Þj ð2Þ

If the distance of the iteration to the nearest neighbor ratio exceeds
a defined threshold (e.g. data standard deviation in this case), the
point is considered as a false neighbor. The final result is a fraction (e.g.
percentage) of false neighbors for each embedding dimension.

Maximal Lyapunov exponents are strong indicators of chaotic
behaviour of a system. This is a parameter characterizing the
separation rate of closer trajectories within a phase space (Sprott,
2003). Even when most investigations use the maximal Lyapunov
exponent, we worked with the Lyapunov spectra (Sano and Sawada,
1985) as they also can be computed from the spatial series without an
explicit mathematical model (Kantz and Schriber, 2003). In addition,
the Kaplan–Yorke dimension (DKY) is computed from the spectrum of
Lyapunov exponents (Kaplan and Yorke, 1987). Hereafter, we fitted
nonlinear time series concepts to nonlinear spatial series. This implies
a spatial sequence {y0,y1,y2,….yi,…,yn}, where yi represents the soil
property measured at the point i=0,1,2,…,n. Here, we adjust the
theoretical rationale for computing the largest Lyapunov exponent
(λmax). This is the same as that presented within the TISEAN project. In
fact, there is an ample literature presenting many variants for λmax

estimations. Let us consider the spatial series data (point soil property
in this case) as a trajectory and assume a Euclidean distance Δ=yn−yn′
representing a small perturbation due to nearest neighbors to the data
point yn. The future of Δ can be estimated from the spatial series
according to the algorithm of Wolf et al. (1985):

S e;m; xð Þ~ log
X

jyn + x − ynV+ xj~λmaxx ð3Þ

where ε is the spacing of a two dimensional grid constructed for
defining nearest neighbours. In general, the slope of a semi-log plot of
S(ε,m,x) versus x would estimate numerically the maximal Lyapunov
exponent. Based on λmax values, three cases are distinguished from
physical systems:

i) λmaxb0 represents a dissipative dynamical systemwith asymp-
totic stability.

ii) λmax=0 is characteristic of conservative dynamical systems.
This could be a very rare case for open, real systems like soils.

iii) λmaxN0 is the exponent of unstable and chaotic systems. This
situation does not reject the existence of some type of
organization and/or pattern emergence (e.g. fractal or multi-
fractal structures).

The Kaplan–Yorke dimension (DKY) is an interesting nonlinear
parameter as it is usually associated to the complex structure of the
attractor confining the dynamics of the system. It was originally stated
as a conjecture (Kaplan and Yorke, 1987) but it has proved to be true.
Many authors consider DKY as a measure of complexity, strangeness
and fractal dimension of the attractor (Hegger et al., 1999; Sprot,
2007). In addition, Frederickson et al. (1983) also identified DKY with
the information dimension of the system. The practical computation
of DKY requires the spectrum of Lyapunov exponents. Consider a
chaotic system with m degree of freedom (m embedding dimensions
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