
Speculative parallel pattern matching using stride-k DFA for deep
packet inspection

Maleeha Najam a,n, Usman Younis a, Raihan ur Rasool a,b

a School of Electrical Engineering and Computer Science, National University of Sciences and Technology, H-12, Islamabad 44000, Pakistan
b Department of Computer Science, King Faisal University, Al-Hofuf, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 22 August 2014
Received in revised form
28 November 2014
Accepted 29 April 2015
Available online 11 May 2015

Keywords:
DFA
Regular expressions
Multi-byte matching
Alphabet compression
Deep packet inspection

a b s t r a c t

Modern deep packet inspection (DPI) systems match network traffic against a large set of patterns which
are defined using regular expressions. Deterministic finite automata (DFA) is generally preferred to parse
these regular expressions. However, packets are mostly scanned one byte at a time which becomes a
bottleneck for the DPI systems as they are unable to cope up with higher line rates. In this paper, we
present an approach which allows a packet to be split up into two chunks. Furthermore, we scan the
bytes of each chunk in parallel using speculation and multi-stride (stride-k) DFA. Stride-k DFAs results in
fast processing of bytes but leads to high memory usage. Therefore, we propose a transition compression
algorithm using alphabet compression table to limit the memory usage of multi-stride DFA. Experi-
mental results show that the speculative parallel pattern matching using stride-k DFA leads to
improvement in terms of speedup and latency over traditional DFA matching.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Deep packet inspection (DPI) has become an attractive choice
for inspecting network packets. This technology is being widely
adopted by network intrusion detection systems (IDS), intrusion
prevention systems (IPS), firewalls, and many other traffic mon-
itoring applications (Roesch, http://www.snort.org; http://l7-filter.
clearfoundation.com/start; Ahmad and Younis, 2014). Earlier,
packets were used to be classified on the basis of their header
fields, where as DPI based network monitoring systems allow
inspection on the basis of packets’ payload. It searches for
predefined patterns inside payload which are either expressed as
simple strings or in the form of regular expressions. Regular
expressions are highly preferred over string patterns as they
provide much more flexibility and expressiveness as compared
to fixed strings (Wang et al., 2012).

Modern IDSs, such as, Snort, Bro, and L7 filter, make significant
use of regular expressions in their matching engines. Regular
expressions are expressed using finite automata as it is considered
to be the most efficient mechanism to detect patterns. The two
most widely used finite automata representations of regular
expression are deterministic finite automata (DFA), and non-
deterministic finite automata (NFA). In both NFA and DFA, each

state is defined for all the elements present in the alphabet. In
NFA, each state triggers one or more than one state transition for
each unique element in the alphabet. Unlike NFA, a state in a DFA
triggers exactly single transition for each element in the alphabet.
Therefore, DFAs are considered to be processing efficient with the
worst case processing complexity of O(1) for each input character,
as compared to NFA which has O(n2) worst case complexity – n
being the length of the regular expression (Yu et al., 2006). On the
other hand, NFAs are considered to be more space efficient with
the worst case storage cost of O(n), as compared to DFA which has
O(2n) worst case storage cost.

Mostly, DFAs are used in pattern matching engines due to their
ability to do high speed matching in fast-pace networks. Therefore,
researchers are putting their efforts to improve the DFA based
matching engines by focusing on reducing the memory footprint
as it is the major drawback of DFAs; whereas less work is being
done to speed up the look-up process in DFA based matching
engines. Some hardware based approaches, reported in Lunteren
et al. (2012), Brodie et al. (2006) and Becchi and Crowley (2007),
have been proposed for pattern matching which either make use
of field-programmable gate arrays (FPGA) or application-specific
integrated circuits (ASIC) to achieve high throughputs in DFA
based matching engines. However, they do not provide the type
of flexibility which the software based approaches can provide
when it comes to update the regular expressions.

In IDS/IPS, the incoming packets are mostly scanned one byte at
a time which limits the throughput and latency of the system and
creates a bottleneck for the network traffic which is having speeds

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2015.04.013
1084-8045/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: 12mseemnajam@seecs.edu.pk (M. Najam),

usman.younis@seecs.edu.pk (U. Younis), raihan.rasool@seecs.edu.pk,
rrasool@kfu.edu.sa (R.u. Rasool).

Journal of Network and Computer Applications 54 (2015) 78–87

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2015.04.013
http://dx.doi.org/10.1016/j.jnca.2015.04.013
http://dx.doi.org/10.1016/j.jnca.2015.04.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.04.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.04.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2015.04.013&domain=pdf
mailto:12mseemnajam@seecs.edu.pk
mailto:usman.younis@seecs.edu.pk
mailto:raihan.rasool@seecs.edu.pk
mailto:rrasool@kfu.edu.sa
http://dx.doi.org/10.1016/j.jnca.2015.04.013


of tens of gigabits per second (Luchaup et al., 2009). However,
some new approaches make use of multi-stride DFAs to speed up
the packet matching engines - where stride refers to the number
of bytes processed per state transition. However, memory require-
ments increase when stride level is increased. For instance, with
the alphabet size of 256, stride-1 DFA has 256 transitions per state.
Its corresponding stride-2 DFA, which can process two bytes at a
time, will have 2562 transitions per state. Speculative parallel
pattern (SPPM) matching is one approach which speeds up the
evaluation of regular expressions against packets without increas-
ing the number of strides. The core idea behind SPPM is to divide
the incoming packets stream into two chunks and scan one byte
from each chunk at a time.

The contributions of this paper can be summarized as follows:
(1) we have designed a transition compression algorithm for the
multi-stride DFA, and (2) we have proposed an algorithm which
makes use of SPPM on multi-stride DFA structures. The perfor-
mance of our proposed algorithm has been evaluated using the
real and artificial network traces for regular expressions extracted
from Snort and L7 filter. The remainder of this paper is organized
as follows. In Section 2, we present the related work. In Section 4,
we propose the transition compression algorithm for multi-stride-
DFAs. In Section 5, we discuss the algorithm which makes use of
SPPM on multi-stride DFAs. In Section 6, results of performance
evaluation of the algorithms are discussed. Finally, the paper is
concluded along with future work in Section 7.

2. Related work

The string based pattern matching has been the most simple
network packet inspection technique which mostly make use Aho-
Corasik or Boyre Moore algorithms (Aho and Corasick, 1975; Boyer
and Moore, 1977). Though, string based matching is still used during
pre-processing stages of packet inspection, as it speeds up the
process, but in the past few years a widespread use of regular
expressions has been observed in many network monitoring applica-
tions. Regular expressions are often implemented either using DFAs
or NFAs. DFAs give rise to large memory usage but need just one
memory access per character, whereas NFAs offer low memory cost
but have high memory bandwidth, i.e., large number of memory
accesses per character. Therefore, as discussed earlier, DFAs are mostly
preferred and research is still going on to reduce the memory
footprint of DFAs and speed up the look up process to make the
implementation of DFAs feasible in real-time systems.

A number of FPGA and ASIC approaches have been proposed which
can provide higher throughput due to the parallelism offered by the
hardware (Lunteren et al., 2012; Brodie et al., 2006; Becchi and Crowley,
2007). These higher throughputs are difficult to be achieved using
software based techniques which make use of memory to store
automaton. However, FPGAs have a drawback when it comes to update
the regular expressions circuitry to support the detection of new viruses
and threats. Moreover, some attempts are also made using Graphics
Processing Unit (GPU) for the same purpose as they are cost effective
and provide very high memory bandwidth (Yu and Becchi, 2013;
Vasiliadis et al., 2008, 2009; Smith et al., 2009; Lin C-H et al., 2011).

In memory based approaches, alphabet reduction techniques
are often employed for reducing DFA storage requirements (Brodie
et al., 2006; Kong et al., 2008; Becchi and Crowley, 2007). Alphabet
reduction is often based upon the observation that the distinct
symbols of alphabets, over which the DFA is defined, often share
identical behavior among different states of the DFA. This allows
forming equivalent classes or groups of symbols which share the
same behavior. Afterwards, each state is represented by the classes
of the alphabets instead of their symbols. Moreover, authors in
Becchi and Crowley (2007) have proposed a hybrid scheme which

makes use of both NFA and DFA for the construction of automaton.
This approach also leads to a suitable memory requirement and an
average memory bandwidth.

Exponential growth in the number of DFA states is often seen
when multiple complex regular expressions are compiled to
generate a composite DFA. Yu et al. have proposed a grouping
algorithm for regular expressions and some rule re-writing tech-
niques to mitigate this memory blow-up problem in Yu et al.
(2006). Similarly, state merging technique has been reported in
Becchi and Cadambi (2007), which results in significant memory
reduction by allowing non-equivalent states in a DFA to be
merged. Transition compression techniques for DFAs have been
used to reduce the memory footprint in Becchi and Cadambi
(2007), Liu T et al. (2011), Becchi and Crowley (2007) and Kumar
et al. (2006)). These techniques also achieve a better pattern
matching performance, i.e., if DFA's size is reasonable then a large
number of DFAs can fit into processor's cache which results in
small number of main memory accesses and a reduced latency.

In general purpose processor, the throughput of any pattern
matching application is limited by memory bandwidth. Therefore,
some work has also been reported in the area of multi-byte
matching to increase the throughput of the system by consuming
multiple bytes per state transition (Brodie et al., 2006; Becchi and
Crowley, 2008; Wang et al., 2011). Multi-byte approaches some-
times result in exponential increase in the alphabet size which
leads to an increase in the transition table size. Therefore, alphabet
encoding, run-length coding, and many other transition compres-
sion techniques are used to mitigate these effects of memory
blow-up. Unlike multi-byte approaches, sampling technique has
been introduced in Ficara et al. (2010), which skips large portions
of text while scanning input. This results in the processing of lesser
bytes, however a confirmation stage is required as this technique
may lead to false alarms.

Another approach which focuses on improving throughput and
reducing latency is SPPM (Luchaup et al., 2009, 2011). This approach
achieves significant speed-up by dividing the input stream into two
chunks, and then scanning one byte each from both the chunks in
parallel. Different SPPM based algorithms for single-threaded soft-
ware running on commodity processors as well as for parallel
hardware are proposed in Luchaup et al. (2009, 2011).

3. Problem formulation

A multi-stride DFA requires more than one byte at a time to
trigger a state transition which leads to high throughput in the
evaluation of regular expressions. However, it is often observed
that DFAs show a trade-off between memory and run-time
execution. This trade-off is a major bottleneck for multi-stride
DFAs, as the memory requirements for multi-stride DFAs are much
greater than that for the single-stride DFAs. For example, a stride-1
DFA defined over 256 ASCII characters would require 256 transi-
tions per state, whereas its corresponding stride-2 DFAwill require
2562 transitions per state. Now, suppose that we have a DFA for a
complex regular expression set which comprises of 1000 states. In
this case, total transitions for the stride-1 DFA and stride-2 DFA
will be 256,000 and 65,536,000, respectively. Similarly, if we keep
on increasing the stride level, the number of transitions will also
keep on increasing, which results in increased memory usage.
Therefore, it is important to overcome this issue as memory is a
critical resource in software based approaches, also known as
memory centric approaches. Several DFA compression algorithms
have been proposed earlier, but sometimes a compression algo-
rithm may increase the number of memory accesses resulting in
slow-down of the matching engine (Kong et al., 2008). To cater all
these problems, we propose a solution for the multi-stride DFAs

M. Najam et al. / Journal of Network and Computer Applications 54 (2015) 78–87 79



Download English Version:

https://daneshyari.com/en/article/457255

Download Persian Version:

https://daneshyari.com/article/457255

Daneshyari.com

https://daneshyari.com/en/article/457255
https://daneshyari.com/article/457255
https://daneshyari.com

