
An RDF-based P2P overlay network supporting range
and wildcard queries

Ing-Chau Chang a, Eric Jui-Lin Lu b,n, Shiuan-Yin Huang b, Yi-Hui Chen c,d,nn

a Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua, Taiwan, ROC
b Department of Management Information Systems, National Chung Hsing University, Taichung, Taiwan, ROC
c Department of Applied Informatics and Multimedia, Asia University, Taichung, Taiwan, ROC
d Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

a r t i c l e i n f o

Article history:
Received 8 April 2013
Received in revised form
19 May 2014
Accepted 10 August 2014
Available online 27 August 2014

Keywords:
Distributed Hash Table
DHT
Peer-to-Peer overlay network
RDF
Wildcard

a b s t r a c t

In recent years, a new branch of the P2P research called the semantic-based system has been emerged.
The semantic-based P2P overlay network uses metadata to describe resources so that complex queries
can be implemented. Although systems such as RDFPeers and RDF-Chord support complex queries
including the range query, none of these systems in the literature supports the wildcard query. In this
paper, we propose a RDF-based P2P overlay network, called RDFChord-W, which supports all atomic
queries, conjunctive and disjunctive queries, the range query, and the wildcard query. In RDFChord-W,
nodes are arranged into multiple layers where each layer is organized as a Chord-like ring. Resources are
described by their RDF triples. Hence, the indices of resources can be generated by hashing their RDF
triples and then distributed to corresponding nodes. Based on our survey in the P2P literature,
RDFChord-W is the first RDF-based P2P overlay network that supports the wildcard query. Although
RDFChord-W supports various types of queries, its performance is much superior to traditional P2P
overlay networks such as RDFPeers and Squid through intensive experiments, which are executed by the
well-known simulator PeerSim.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the tremendous growth of Internet usage, more and
more resources are shared in Peer-to-Peer (P2P) systems. Among
various types of network architectures, structured P2P systems
such as Chord (Stoica et al., 2003), Pastry (Rowstron and Druschel,
2001), and Tapestry (Bloom, 1970) became very popular because of
their efficiencies and the guaranteed-to-find property. In general, a
structured P2P system generates indices of resources by hashing
their names or keywords with a Distributed Hash Table (DHT), and
then saves indices in the corresponding nodes. When receiving a
query, a node in a structured P2P system hashes the query to
generate a key, and the node storing the index that matches the
key is obtained. Hence, this kind of structured P2P system is also
called the DHT-based system.

According to the design of DHT, the query time complexity of
most structured P2P systems is O(log n) where n is the total
number of nodes. Because traditional DHT-based P2P systems only

support exact-match queries, they are not suitable for complex
queries (Sagan, 1994). For example, for a query Q(“author”, “Eric”),
resources described with keywords “author” and “Eric” can be
found, while resources described with keywords “author” and
“Eric Lu” cannot. As a result, many DHT-based P2P systems have
been proposed to support complex queries such as the range query
(Cai et al., 2004a; Li et al., 2009; Schmidt and Parashar, 2008) and
wildcard query (Ahmed and Boutaba, 2007, 2009; Joung and Yang,
2009; Schmidt and Parashar, 2008).

In recent years, a new branch of P2P systems called the
semantic-based system has emerged. In the semantic-based sys-
tem, metadata are used for describing resources. With the richness
of metadata, queries can be more complex and flexible. Semantic-
based systems can be classified into two categories according to
their objectives. The main objective of systems such as Peer-to-
Peer Semantic Link Network (P2PSLN) (Zhuge et al., 2005), R-
Chord (Liu and Zhuge, 2006), GridVine (Cudre-Mauroux et al.,
2007), Atlas (Kaoudi et al., 2010), and Two-Level Chord (Yeh et al.,
2010) in the first category is to enrich queries by utilizing and
deriving the semantics of metadata. For example, in R-Chord,
relevant resources can be described by using semantic links such
as Equal-to. Thus, when resource A is retrieved by a query, resource
B will be obtained if A is Equal-to B. The main objective of systems
such as RDFPeers (Cai et al., 2004b) and RDF-Chord (Lu et al., 2012)

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jnca

Journal of Network and Computer Applications

http://dx.doi.org/10.1016/j.jnca.2014.08.005
1084-8045/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Department of Management Information Systems,
National Chung Hsing University, Taichung, Taiwan R.O.C. Tel.: þ886 4 22840864;
fax: þ886 4 22857173.

nn Corresponding author.
E-mail addresses: jllu@nchu.edu.tw (E.-L. Lu), chenyh@asia.edu.tw (Y.-H. Chen).

Journal of Network and Computer Applications 46 (2014) 124–138

www.sciencedirect.com/science/journal/10848045
www.elsevier.com/locate/jnca
http://dx.doi.org/10.1016/j.jnca.2014.08.005
http://dx.doi.org/10.1016/j.jnca.2014.08.005
http://dx.doi.org/10.1016/j.jnca.2014.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.08.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2014.08.005&domain=pdf
mailto:jllu@nchu.edu.tw
mailto:chenyh@asia.edu.tw
http://dx.doi.org/10.1016/j.jnca.2014.08.005


in the second category is to integrate semantic queries with
complex queries such as the range query and provide efficient
query lookups. Generally, systems in this category adopt the
DHT-based architecture and use the Resource Description
Framework (RDF) (2013) to annotate resources. Our research in
this paper falls into this category.

RDF is one of the popular languages for representing metadata
developed byWorld WideWeb Consortium (W3C). An RDF document
is composed of a set of RDF triples. Each triple t is represented as
(subject, predicate, object), where subject denotes a resource, predicate
defines a specific property of the resource, and object describes the
actual value of the predicate. A resource can be described as one or
more RDF triples. For example, if the unit price of an url is 100 and the
publication year of the url is 2013, it can be described by RDF triples
such as (url, price, 100) and (url, year, 2013). In RDFPeers, indices are
generated by hashing each field of a RDF triple with a locality-
preserving hash function. Hence, RDFPeers supports RDF atomic query,
disjunctive query, conjunctive multi-predicate query, and range query.
Because disjunctive-and-range query is accomplished by issuing
multiple atomic queries, this results in extra overhead. In order to
provide more efficient range queries by fully utilizing the relationships
between any two fields of a RDF triple, nine RDF keys are designed
and proposed in our preliminary work, RDF-Chord (Lu et al., 2012).
Although the design of RDF keys in RDF-Chord makes execution
speeds of range queries at least 100 times faster than those of
RDFPeers, the maintenance cost of RDF-Chord is higher than that of
RDFPeers because RDF-Chord has to maintain routing information for
three ring-sets.

To the best knowledge, there are no semantic-based P2P systems
supporting the wildcard query. Therefore, to support the wildcard
query and reduce high maintenance overhead, we will propose
RDFChord-W in this paper. In RDFChord-W, we also design new
locality-preserving hash functions and four RDF-W keys adapted from
the concept of RDF keys. Hence, RDFChord-W not only supports all
RDF atomic queries, conjunctive multi-predicate query, disjunctive
query, and range query, but also supports three forms of wildcard
queries, i.e., prefix-match query, suffix-match query, and pre/suffix-
match query. Additionally, in RDFChord-W, the number of ring sets is
reduced from three to one. The maintenance overhead, based on our
experimental results, is in average about 20 and 40 hops lower than
those of RDFPeers and Squid, respectively. Additionally, the cost of its
range query is about 100 and 10 times faster than those of RDFPeers
and Squid, respectively.

The rest of this paper is organized as follows. In Section 2, we
briefly introduce the range query as well as the wildcard query,
and then give an overview of existing systems that support these
two kinds of queries. In Section 3, we first introduce the design
of indices, and then describe the architecture, query resolving,
node joining, and maintenance processes of RDFChord-W. Results
of various simulations are presented and analyzed in Section 4.
Finally, conclusions and possible future works are presented in
Section 5.

2. Related works

2.1. Systems supporting the range query

Non-semantic-based P2P systems such as MAAN (Cai et al.,
2004a), Squid (Schmidt and Parashar, 2008), and Armada (Li et al.,
2009) are DHT-based systems supporting the range query. To
support the range query, these systems utilize the locality-
preserving hash function to hash keywords. A hash function H is
a locality preserving hash function if it has the following property:
H(vi)oH(vj) if viovj, and if an interval [vi, vj] is split into [vi, vk]
and [vk, vj], the corresponding interval [H(vi), H(vj)] can be split
into [H(vi), H(vk)] and [H(vk), H(vj)] (Cai et al., 2004a). With such a
feature, for a range query Q(2000–2500), the relationship H(2000)
oH(2500) holds and resources whose hashed keyword values falls
between H(2000) and H(2500) will be retrieved.

Semantic-based systems that support range queries include
RDFPeers and RDF-Chord. In RDFPeers, indices are generated
by hashing each field of RDF triples with a locality-preserving
hash function. Similar to non-semantic-based systems, for a range
query Q(?s,?p, 2000–2500), resources whose hashed object values
falls between H(2000) and H(2500) will be retrieved. If ?p is
replaced by “price”, the range query now becomes Q(?s, “price”,
2000–2500). To process the query, these systems have to issue a
query Q (?s,?p, 2000–2500) and then select only the resources
whose predicates are “price” as queried results. It is noted that, in
the query process of Q(?s,?p, 2000–2500), all nodes whose hashed
object values falls between H(2000) and H(2500) will be retrieved.
In other words, nodes that do not match Q(?s, “price”, 2000–2500),
e.g., (s, “weight”, 2200) or (s, “year”, 2010), will also be retrieved,
and this results in extra overhead.

To resolve the above problem, each node in RDF-Chord is
distributed to three ring sets, i.e., the subject ring set, the predicate
ring set, and the object ring set, based on the RDF triples of the
resources that the node has. Each ring set is split into multiple
layers, where nodes on each layer are organized into a Chord-like
ring. Layers in each ring set are linked by nodes called bridge peers
(BP), where BPs are nodes that are relatively stable and with
higher processing power or bandwidth. All BPs are organized into
a Chord-like BP layer.

In order to take advantages of metadata and provide more
efficient range query, RDF-Chord designed novel RDF keys for
each type of RDF atomic query. Various types of the atomic
query and their corresponding keys are shown in Table 1, where
Hx is a locality-preserving hash function with 2x hash space, and
x is half of the length of index space m. With the design of RDF
keys, to find resources whose predicate is “price” and the value
of object falls between 2000 and 2500, only one query Q(?s,
“price”, 2000–2500) has to be issued, and the query will not
be sent to nodes with resource such as (s, “weight”, 2200) or
(s, “year”, 2010). Therefore, the range query overhead is significantly
reduced.

Table 1
The RDF atomic queries and the corresponding keys.

Query type Query semantic Key

(s, ?p, ?o) Find all the p and o of the triples which have matched s. ks¼Hx(s)�2x

(s, p, ?o) Find all the o of the triples which have matched s and p. ksp¼Hx(s)�2xþ Hx(p)
(s, ?p, o) Find all the p of the triples which have matched s and p. kso¼Hx(s)�2xþHx(o)
(?s, p, ?o) Find all the s and o of the triples which have matched p. kp¼Hx(p)�2x

(?s, p, o) Find all the s of the triples which have matched p and o. kpo¼Hx(p)�2xþHx(o)
(?s, ?p, o) Find all the o of the triples which have matched s and p. ko¼Hx(o)�2x

I.-C. Chang et al. / Journal of Network and Computer Applications 46 (2014) 124–138 125



Download English Version:

https://daneshyari.com/en/article/457287

Download Persian Version:

https://daneshyari.com/article/457287

Daneshyari.com

https://daneshyari.com/en/article/457287
https://daneshyari.com/article/457287
https://daneshyari.com

