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important to quantify the uncertainty associated with the maps produced. The most common approach is
some form of regression kriging or variation involving geostatistical simulation. Another way of assessing the
spatial uncertainty lies in the Bayesian approach where the uncertainty is described by the posterior density.
Typically Markov Chain Monte Carlo is used to compute the posterior density; however, this process is compu-
tationally intensive. The aim of this paper is to present an example of Bayesian uncertainty evaluation using
(Bayesian) latent Gaussian models fitted using INLA (Integrated Nested Laplace Approximation) and with the
SPDE (Stochastic Partial Differential Equation) approach for modelling the spatial correlation. For illustration,
soil organic matter content in the Grampian region of Scotland (UK, about 12,100 km?) was modelled for topsoil
(2D) and whole-profile data (3D). Results were assessed using in-sample and out-of-sample measures and
compared for distribution similarity, variogram and spatial structure reproduction, computational load and
uncertainty ranges. The results were also compared with outputs from an extension of scorpan-kriging. The
Bayesian framework using INLA offers a viable alternative to existing methods for digital soil mapping, with com-
parable validation results, important computational gains, good assessment of uncertainty and potential for inte-
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1. Introduction

Soils play an important role in the environment and in ecosystem
functions. Soil are highly variable in space and uncertainty is inherently
associated with soil modelling and mapping at different scales. Numer-
ous studies in recent years have modelled various soil properties with
the support of environmental covariates. Most of these studies focused
on mapping the horizontal variability with separate models for each of
the soil layers considered, most often the topsoil. More recently,
approaches were described and applied to take into account the vertical
variability and the relationships across soil horizons (Malone et al.,
2009).

Any model for digital soil mapping suffers from different types of
errors, including interpolation errors, and it is therefore important to
quantify the uncertainty associated with the maps produced. Various
studies have emphasised the importance of modelling and assessing
the uncertainty of the results of each mapping exercise (e.g. Minasny
et al., 2013; Martin et al., 2011). The uncertainty can have important
effects on further modelling especially when combined with the uncer-
tainty inherited from other processes, such as a climate model. The lack
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of uncertainty assessment does not provide information on the
reliability of predictions, limiting the potential for decision making
(McBratney, 1992; Ogle et al., 2010).

Most of the methods used to date in the assessment of spatial uncer-
tainty for digital soil mapping are within the frequentist framework or
the conventional geostatistical approach as defined by Diggle et al.
(1998). The most common method is some form of regression kriging
or study of variation involving geostatistical simulation within the
frequentist framework with uncertainty calculated from a (large) num-
ber of realisations (e.g. McBratney et al., 2003; Hengl et al., 2004; Grimm
et al., 2008; Poggio and Gimona, 2014). Frequentist methods cannot
easily reveal and model the uncertainty of all model parameters
(Banerjee et al., 2014), but some studies have focussed on the estima-
tion of uncertainty within a frequentist geostatistical approach (see
e.g. Marchant and Lark, 2004, 2007; Zhu and Stein, 2005). An alternative
to the frequentist approach is Bayesian modelling, where uncertainty is
described explicitly by the posterior density (Banerjee et al., 2014;
Cameletti and Blangiardo, 2015). The Bayesian approach produces cred-
ibility intervals which explicitly indicate the probability that the param-
eters lie within a specific range. In contrast, assuming repeatability of
the experiment under the same spatial and temporal conditions, confi-
dence intervals from the frequentist approach indicate the percentage
of occasions that the interval contains the “true”, unknown parameter
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value (Banerjee et al., 2014; Cameletti and Blangiardo, 2015). Bayesian
approaches have tended to rely on Markov Chain Monte Carlo
(MCMC) simulations to make inference. MCMC algorithms have been
widely applied to a number of environmental applications (e.g.
Kazianka and Pilz, 2012; Hararuk and Luo, 2014; Patil et al., 2011;
Zhang, 2002; Verdin et al., 2015). However, fewer applications exist in
the domain of soil science, apart from work on Bayesian kriging (e.g.
Aelion et al., 2009) and Bayesian hierarchical modelling (e.g. Minasny
etal, 2011; Xiong et al., 2015; Sun et al.,, 2013). The Bayesian approach
has been applied to hydrological properties (Marthews et al., 2014),
such as soil moisture (Gao et al.,, 2014) or water retention curves
(Yang et al., 2015).

MCMC is flexible and able to deal with virtually any type of data
and models (e.g. Gaussian univariate Bayesian spatial regression
models), but involves computationally- and time-intensive simulations
(Banerjee et al., 2008); this can be a limiting factor in Bayesian spatial
applications with respect to the size of data sets which can be analysed,
although the availability of parallel computing can facilitate computa-
tion for larger data sets (Minasny et al., 2011; Schmidberger et al.,
2009). Recently a computationally efficient alternative to MCMC
was developed for so-called latent Gaussian models—the Integrated
Nested Laplace Approximation approach (INLA, Rue et al., 2009). The
set of latent Gaussian models includes many forms of regression,
including (generalised) linear mixed spatial models, but is relatively
limited in terms of general hierarchical modelling. A recent review
(Falk et al., 2015) provides a comparison of algorithms and computa-
tional implementations applied to remote sensing images. INLA can be
combined with the Stochastic Partial Differential Equation (SPDE) ap-
proach (Lindgren et al., 2011; Lindgren and Rue, 2015) for efficient
modelling of spatial point data and geostatistical applications (Bivand
et al,, 2015). INLA with SPDE (henceforth “INLA + SPDE”) has been ap-
plied to a variety of environmental problems, such as those in: Illian
etal. (2013); Carson and Flemming (2014); Serra et al. (2014). Recent
studies used this approach to model changes in fire regimes in a large
area of the Amazon forest (Gutierrez-Velez et al., 2014). An initial
study applying INLA + SPDE to soil properties was presented in Poggio
et al. (2014, 2016).

The main aim of this paper is to present a Bayesian framework using
latent Gaussian models fitted with INLA and using the SPDE method for
modelling the spatial correlation (INLA + SPDE) including both lateral
(2D) and vertical (3D) variability of soil properties to introduce it to
the Digital Soil Mapping (DSM) toolkit. To illustrate the approach, we
mapped the soil organic matter content in Scottish soils at a regional
scale. The process and results of INLA+ SPDE were compared with
results from an extension of the scorpan-kriging approach, i.e. hybrid
geostatistical Generalized Additive Models (GAM, Wood, 2006),
combining GAM with Gaussian simulations (henceforth GAM + GS,
Poggio and Gimona, 2014). The comparison will show that the proposed
method has comparable results with respect to validation, is more
computationally efficient and is more flexible in dealing with spatial un-
certainty and its propagation.

2. Data and test areas
2.1. Test areas

In Scotland there is a clear distinction between organic and mineral
soils, which often results in a bimodal distribution of soil properties,
especially organic matter content (Chapman et al., 2009; Poggio et al.,
2013).

Within Scotland, a test area was chosen to represent a wide range of
soils, both mineral and organic. The Grampian region of Scotland (about
12,100 km?) covers the whole of NE Scotland (Fig. 1) with a variety of
landscapes and soils. It includes large river catchments and the Cairn-
gorm mountains, with some of the highest peaks in Scotland. In this

region there is a good spread of both mineral and organic soils, with dif-
ferent patch sizes and fragmentation soil types.

2.2. Response variable

The Scottish Soils Database contains information and data on soils
from locations throughout Scotland. It contains the National Soil Inven-
tory of Scotland (NSIS) profile samples collected on a regular 10 km grid
of sampled locations (Lilly et al., 2010) and physical and chemical data
from a large number of soil profiles taken to characterise the soil
mapping units.

Fig. 2 shows the distribution for this response variable in the differ-
ent test cases and the number of available soil profiles in each. For 2D
applications, only topsoil values were used, while in 3D applications
values for horizons to a depth of one metre were used. In order to
provide validation of the models the data available were split into two
sets, training and validation, in a ratio of 3:1, where the validation set
was sampled randomly. In this study, the soil property considered was
the percentage of soil organic matter (SOM). As the original data were
percentages, they were mapped onto the real line by the logit function.
This transformation also provided (approximately) Normally distribut-
ed observations.

2.3. Covariates

The covariates included are freely and globally available and were se-
lected to describe, directly or indirectly, the most important scorpan fac-
tors, namely topography, vegetation, climate and geographical position.

2.3.1. Morphology

The Digital Elevation Model (DEM) used as a covariate in the fitted
models was SRTM (Shuttle Radar Topography Mission), further
processed to fill in no-data voids (Jarvis et al., 2006; Rodriguez et al.,
2006). SRTM has a spatial resolution of 90m with global coverage. The
measures used were elevation and slope as the steepest slope angle,
calculated using the D8 method (O’Callaghan and Mark, 1984).

In order to match the resolution of the other covariates the medians
in each grid cell of 1x 1 km were used.

2.3.2. Remote sensing

A set of indices was derived from the Terra Moderate Resolution
Imaging Spectro-radiometer (MODIS) 8 and 16 day composite products.
The data were acquired from the NASA ftp website (ftp://e4ftl01u.ecs.
nasa.gov/MOLT/) for 12 years between 2000 and 2011. The individual
images were restored to fill cloud gaps (Poggio et al., 2012). The indices
were selected for their capability to differentiate spectral responses
from different bare soils, vegetation cover and mixed situations:

1) Enhanced Vegetation Index (EVI; Huete et al., 2002),
2) the Normalised Difference Water Index (NDWI; Gao, 1996)

NIR—SWIR
NDWI= iR + swik (M)

NDWI was calculated with NIR (Near InfraRed) and SWIR (Short
Wave InfraRed) band: SWIR = 2130 (Gu et al., 2008).
Medians over the 12 years were used as covariates.

2.4. Soil information used for prior definition

In order to provide prior information on where peat, highly organic
and mineral soils are likely to be present, an additional data set was
used. This information was derived from two sources: 1. reclassification
of the available traditional soil map, and 2. environmental clustering of
the data available.
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