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Tropical peatlands have an important role in the global carbon cycle. In order to quantify carbon stock for
peatlandmanagement and conservation, the knowledge of the spatial distribution of peat and its depth is essen-
tial. This paper proposed a cost-effective and accuratemethodology formapping peat depth and carbon stocks in
Indonesia. The method, based on the scorpan spatial soil prediction function framework, was tested in Ogan
Komering Ilir, South Sumatra and Katingan, Central Kalimantan. A peat hydrological unit, where a peatland is
bounded by at least two rivers, is defined as the mapping area or extent. Peat depth is modelled as a function
of topography and spatial position. Four machine learning models were evaluated to model and map peat
depth: Cubist regression tree, Random Forests (RF), Quantile Regression Forests (QRF) and Artificial Neural Net-
work (ANN). Covariates representing topography and spatial positionwere derived from the 1 arc-second digital
elevation model (DEM) of the Shuttle Radar Topography Mission (SRTM) (resolution of 30.7 m). The spatial
models were calibrated from field observations. For model calibration and uncertainty analysis, the k-fold
cross validation approach was used. Three models: Cubist, Random Forests, and Quantile Regression Forests
models showed excellent accuracies of peat depth prediction for both areas where the coefficient of determina-
tion values range from 0.67 to 0.92 and root mean squared error (RMSE) values range from 0.6 to 1.1 m. ANN
showed inferior results. In addition, QRF and Cubist showed the best account of the uncertainty of prediction,
in terms of percentage of observations that fall within the defined 90% confidence interval. In terms of the best
predictor, elevation comes first. Using the spatial prediction functions, peat depth maps along with their 90%
confidence interval were generated. The estimated mean carbon stock for Ogan Komering Ilir is 0.474 Gt and
for Katingan is 0.123 Gt. Our estimate for Ogan Komering Ilir is twice larger than a previous study because we
mapped the peatland hydrological unit, while the previous study only delineated peat domes. Finally, we recom-
mend a sampling method for peat depth mapping using numerical stratification of elevation to cover both the
geographical and covariate space. We expect that the combination of an improved sampling strategy, machine
learning models, and kriging will increase the accuracy of peat depth mapping.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Tropical peatlands are characterized by an accumulation of partially
decomposed organic matter in the water-saturated and anaerobic
environment for a long period. Although the bulk density of peat is rel-
atively low, ranging between 0.013 and 0.3 g cm−3 (Agus et al., 2011;
Lähteenoja and Page, 2011; Rudiyanto et al., 2016), its carbon content
is very high, ranging between 23 and 62% on mass basis (Farmer et al.,
2014; Rudiyanto et al., 2016; Warren et al., 2012). In addition, tropical

peats can accumulate up to a thickness of 20 m (Page et al., 2011). As
a result, peatlands store the largest amount of terrestrial carbon per
unit area, and it plays an important role in global carbon cycle as a car-
bon sink, although naturally, they also release two greenhouse gases
(GHG) into the atmosphere: carbon dioxide (CO2) and methane (CH4)
(Farmer et al., 2011; Sjögersten et al., 2014; Wright et al., 2011, 2013).
This fact was supported by Page et al. (2011) who estimated that carbon
stock in global peatlands stores between 480 and 610Gt (Giga tonnes) or
15 to 30% of the world's carbon stock (Hugron et al., 2013), albeit global
peatlands only cover between 3.8 and 4.1 million km2, with the best es-
timate of 3,971,895 km2 or about 2.5 to 3% of thewhole lands of the earth
(Page et al., 2011).

Within the context of Reduce Emissions from Deforestation and
Degradation (REDD+), peatlands become themain concern in themea-
surement, reporting and verification (MRV) system which documents
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carbon stocks and its change. Inventory of carbon in peatlands generally
is calculated from the dot product of carbon content, bulk density and
peat depth (Akumu and McLaughlin, 2014; Fell et al., 2016; Holden
and Connolly, 2011; Parry and Charman, 2013). Range values of carbon
content and bulk density have been well studied; however peat depth
shows a high spatial variation. Thus the presence of accurate peat
depth map is important for reliable estimate carbon stock in peatlands.
The peat depth map is also required for decision policy of sustainable
peatland management (Biancalani and Avagyan, 2014) and for a better
understanding of peatland development (Bauer and Vitt, 2011; Esterle
and Ferm, 1994) as well as its ecosystem function (Joosten and Clarke,
2002). Recently the Indonesian government has released the Regulation
No 71, 2014 on the Protection of Peat Ecosystem. This regulation states
that within a peatland hydrological unit if 30% of the area has a peat
depth more than 3 m (considered as a peat dome) and located in the
river upstream, and then it should be considered as an area of
conservation.

In Indonesia, peatland is estimated to cover 206, 950 km2 (Page et al.,
2011), while (Ritung et al., (2011, 2012)) estimated that peatlands in the
3 main islands: Sumatra, Kalimantan, and Papua, cover 149 ,056 km2.
Nevertheless, there are still much uncertainty in these figures (Hooijer
and Vernimmen, 2013). Moreover, the peatlands covered a relatively
large area and located at remote siteswhich are difficult to access. There-
fore, mapping peat depth remains a big challenge.

Past studies onmapping peat depth commonly used kriging interpo-
lation (Akumu and McLaughlin, 2014; Altdorff et al., 2016; Bauer et al.,
2003; Jaenicke et al., 2008; Keaney et al., 2013; Proulx-McInnis et al.,
2013; van Bellen et al., 2011; Weissert and Disney, 2013); however to
produce a high spatial resolutionmap, it needs a large number of obser-
vations evenly spread throughout the area. Other works used spatial
models to predict peat depth from proxy environmental information
such as terrain attributes (e.g., elevation and slope) (Holden and
Connolly, 2011; Parry et al., 2012). Other models include: a peat depth
inference model (Holden and Connolly, 2011), a power function of the
closest distance to a river (Hooijer and Vernimmen, 2013), an exponen-
tial function of elevation and slope (Parry et al., 2012), and an empirical
function of elevation (Rudiyanto et al., 2015). The accuracy of these
published models is usually moderate.

Remote and proximal sensors such gamma radiometer, GPR, electro-
magnetic induction, and LiDAR have been proposed for mapping peat
depth (Fyfe et al., 2014; Keaney et al., 2013; Koszinski et al., 2015;
Parry et al., 2014; Rosa et al., 2009). These instruments produce high-
resolution data; however, they still need ground data for calibration,
and may not be feasible in remote areas, furthermore, the high cost of
acquiring these data does not allow a wide application.

Digital soil mapping (DSM) has been successfully applied to map
carbon content of mineral soils evidenced by a large number of publica-
tions in recent years (McBratney et al., 2003; Minasny and McBratney,
2015). The advances of DSM are mainly supported by the availability
high-quality covariates as well as the development of machine learning
algorithms such as: Random Forests (Breiman, 2001), Cubist treemodel
(Quinlan, 1992, 1993a,b), Artificial Neural Networks (Bishop, 1995;
Günther and Fritsch, 2010), and regression kriging (Hengl et al., 2004;
Odeh et al., 1994; Odeh et al., 1995). These models have been success-
fully applied in digital mapping of soil organic carbon (Aitkenhead and
Coull, 2016; Aitkenhead et al., 2015; Grimm et al., 2008; Page et al.,
2004; Song et al., 2016; Wiesmeier et al., 2011), soil physicochemical
properties (e.g., bulk density, plant available water capacity, saturated
hydraulic conductivity, pH, chemical concentration) (Malone et al.,
2009; Motaghian and Mohammadi, 2011; Odgers et al., 2015), soil tex-
ture (i.e., percentage of sand, silt and clay) (Adhikari et al., 2013;
Ballabio et al., 2016; Ließ et al., 2012), soil classes (Heung et al., 2016;
Pahlavan Rad et al., 2014; Taghizadeh-Mehrjardi et al., 2015), soil
parent material (Heung et al., 2014), etc.

This paper seeks for a cost-effective and accurate method for map-
ping peat depth in Indonesia. Digital mapping techniques for peatlands

at a relatively high resolution (30 m) using widely available covariates
were proposed. Four machine learning models: Cubist regression tree,
Random Forests (RF), Quantile Regression Forests (QRF) and Artificial
Neural Network (ANN) were evaluated and tested for peat depth
modelling, mapping and uncertainty estimates. Themodels were tested
in two peatlands in Sumatra and Kalimantan. The peat depth map com-
bined with carbon density estimates were used to derive carbon stocks
in these peatlands. In addition, based on important predictors found in
the regression models, the best sampling strategy for peat depth map-
ping will be recommended.

2. Materials and methods

2.1. Study area

Tropical peatlands in Indonesia mostly can be found along the east
coast of Sumatra and in parts of Kalimantan (Page et al., 2006, 2007).
This study was conducted in two peatlands in the two islands
(Fig. 1a). Since the formation of peatlands depends on nutrient and
oxygen availability which was controlled by flooding from rivers
(Anderson, 1961, 1964; Esterle and Ferm, 1994), the mapping area or
extent for both peatlands was defined based on the smallest unit of a
peatland, namely the hydrological peatland unit, where a peatland is
bounded between two rivers or sea. This is in contrastwith themapping
extent defined by Jaenicke et al. (2008) where they only delineated
areas considered as a peat dome.

The first peatland is located in Ogan Komering Ilir (OKI) District in
South Sumatra which covers latitude: S2°23′24.251″ to S3°25′16.313″
and longitude: E105°10′27.152″ to E106°5′37.075″. The total area is
about 610,311 ha and bordered by Riding river in the west and Lumpur
river in the south and Bangka strait in the northeast (Fig. 1b, left). The
main landuse is forest plantation, and some parts are conserved. This
area includes two peat domes studied by Jaenicke et al. (2008): Air
Sugihan and Teluk Pulai. The second area is in Katingan District, Central
Kalimantan and lays on S1°52′7.887″ to S2°6′50.785″ and E113°18′
46.341″ to E113°51′39.727″. The total area is about 93,257 ha and
bordered by Katingan river in the west and Rungan river in the east
(Fig. 1b, right), mainly used as a conservation area. Note that, the
study area in Katingan does not cover the whole peatland because
field observations were only limited to parts of the area. Hereafter, we
refer the two peatlands as OKI and Katingan, respectively.

2.2. Collecting field data

Field data collectionswere carried out between years 2007 and 2009
in OKI. Peat depth data were obtained from field surveys of drilling
using the Eijkelkamp peat auger. The observations were based on tran-
sects commonly used in peat surveys with a distance between observa-
tions of about 100 to 1000 m (Fig. 1b left). Peat depth is defined as the
depth from the surface until the depth where mineral soil layer is
found (Agus et al., 2011; Page et al., 1999). At each location of drilling,
the geographical coordinates were recorded using a global positioning
system (GPS). In addition, data from South Sumatra Forest Fire
Management Project (SSFFMP) collected in 2005 (Prayitno and
Bakri, 2005) were also included in the Ogan Komering Ilir dataset.
For Katingan, the observed peat depths were obtained from
published data of Boehm and Frank (2008) where the peat drillings
were done in years 2006 and 2007 (Fig. 1b right) and Shimada
et al. (2001).

Fig. 2a and b shows the histogram of peat depth data for OKI
and Katingan, respectively. In total, 840 observations were collected
from OKI with peat depth ranging between 0 and 7.1 mwithmedian=
1.9 m and 121 observations were obtained from Katingan ranging
between 0 and 9 m with median = 1.39 m.
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