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Soil organic matter (SOM) plays an important role in terrestrial ecosystem functioning and is closely related to
soil fertility and soil health. Better understanding on the spatial distribution of SOM is vital to agriculture and
C-cycle management. With the advancement of digital soil mapping framework and data mining technology,
selection of environmental covariates become critical to identify the controls of SOM spatial distribution at
different scales and were rarely discussed in previous studies. The objectives of this study were to separate the
scale-specific variations in SOM and their dominant controls at those scales along two transects from Northeast
Covariates and North China Plain. Spatial distribution of SOM was separated into seven scale components (six details, D1
Digital soil mapping through D6 and one approximation, A6) along each transect using the discrete wavelet transform. The largest
Scale variations in SOM were separated in A6 (>1280 km) along the northeast transect (91.2% of the total) and D5
Wavelet transform (320-640 km) along the north transect (40.6% of the total). Unlike the northeast transect, considerable amount
of variations was also separated in other scale components of the north transect. There were no significant
correlations between the scale-components of SOM and terrain factors along both the transects. While a relative-
ly stronger correlation was observed between SOM and climatic and vegetation factors along the northeast
transect, no significant correlation was observed along the north transect at large scales. This may be due to
the long-term cultivation in the Northern China Plain. Principal components 1 and 3 identified from the
proximally sensed visible and near infrared (vis-NIR) spectra had strong correlation with SOM along the north
transect while the principle component 2 was highly correlated with SOM along the northeast transect. The
scale-specific controlling factors at different locations may help in selecting environmental factors in digital
soil mapping at different scales for improving mapping accuracy.
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1. Introduction

Soil organic matter (SOM) is one of the key variables for agronomic
and environmental management. It controls soil fertility and has a
significant impact on atmospheric CO, concentration thus the global
carbon cycle (Smith et al., 1997). Therefore, detailed understanding of
the spatial distribution of SOM is necessary for better fertility manage-
ment and comprehension of the process of terrestrial carbon cycle.

Spatial distribution of SOM is controlled by a suite of environmental
factors including geomorphology, predominant vegetation type and
intensity, climate, land use and others (McBratney et al., 2003; Scull
et al., 2003) as they change across the landscape (Corstanje et al.,
2007). Following Jenny's (1941) soil formation theory, therefore, a func-
tional relationship can be developed between SOM and environmental
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factors. For example, a functional predictive relationship can be devel-
oped between the SOM and the controlling factors at observed locations
using some mathematical and statistical theory. Once developed, the
relationship can be extended to locations with unobserved SOM but
known controlling factors to prepare a high resolution map. This
concept is known as the digital soil mapping (DSM, McBratney et al.,
2003) and has received an extreme attention of soil scientists in the
recent past. This became more attractive with the development of
powerful computers and availability of high-resolution information on
large numbers of controlling factors or predictor variables (Poggio
et al., 2013; Mansuy et al.,, 2014; Viscarra Rossel et al., 2014). However,
the success of DSM depends on the selection of predictor variables,
calibration of the model or predictive relationship, and the validation
of the model. Nevertheless, current DSM research often emphasizes
the latter two, leaving the predictor variable selection process to the
researcher's expert knowledge (Miller et al., 2015). It is still a challenge
to embody the factors to the variables we observe and identify from mass
data catalog. Additionally, the variability within the environmental
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covariates makes this more challenging. Often the environmental factors
operate in different intensities and at different scales therefore exhibiting
scale-dependent relationship with SOM. This scale-dependent variability
makes the predictive relationship development yet more challenging.
Therefore, it is necessary to understand the variability of SOM at different
scales and the dominant controlling factors at those scales which may
help in selecting the appropriate environmental covariates.

Though the Pearson correlation analysis is the most commonly used
method in identifying the dominant controlling factors, it explains the
linear association globally without taking into account the scale effect.
Soil properties may vary over space with either linear or nonlinear
trends as affected by diverse environmental conditions and cannot be
examined using Pearson correlation analysis (Biswas and Si, 2011).
Wavelet transform, an advanced mathematical method, has been
applied to spatial data series of soil variables whose variance, at multiple
scales, cannot plausibly be treated as uniform in space (Lark and
Webster, 1999; Milne et al., 2014). Wavelet transform has been used
to examine the scale-dependent spatial heterogeneity of soil properties
(Lark and Webster, 1999; Biswas et al., 2013) and shows promise in
these studies to examine the scale-dependent variability of SOM and
its controlling factors at different scales. Therefore the objectives of
this study were to examine the spatial scale characters of SOM distribu-
tion along two transects from Northeast and North China Plain and
identify the dominant controls of SOM at those scales. We have used
discrete wavelet transform to separate the variations in SOM at different
scales and their contribution towards the overall variability. Then we
have correlated each scale component of SOM with environmental
factors to identify the scale-specific dominant controls.

2. Materials and methods
2.1. Data

2.1.1. Soil sampling and measurement

The study area is located in the Northeast and Northern Plains,
China, covering approximately 642,000 km?. A total of 1078 sampling
locations were selected using an approximately 30-km grid across the
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agricultural production areas in 2003 and 2004 (Fig. 1). Soil samples
were collected from the 20-cm surface layer, air-dried and sieved to
less than 2 mm and analyzed in a laboratory for SOM colorimetrically
after H,SO4-dichromate oxidation at 150 °C. The SOM of 1078 locations
were interpolated over the whole study area using inverse distance
weighting in ArcGIS 10.0. The cross validation of the interpolation
showed a determination coefficient of 0.70.

Two transects were constructed considering the climate zone of
China. One transect was constructed in the mid-temperate zone,
which was from the northeast corner to about the center of the study
area that lay within the Northeastern Plain of China (Fig. 2). The second
transect was constructed in the warm temperate zone, which was from
the central part to the southwest corner of the study area that lay within
the North China Plain (Fig. 2). Both transects were 1280 km long with
128 sample points each (10 km sampling interval) and extracted SOM
value from the interpolation of SOM map (Fig. 3).

2.1.2. Collection of environmental covariates

A number of environmental covariates were used in this study
including remote sensing data, digital elevation model and proximal
sensing data (Table 1). Two types of remote sensing data were obtained
and used in this study. The first one is Moderate Resolution Imaging
Spectroradiometer (MODIS). It has shown advantages in land surface
research (Justice et al., 1998) and provides users information with a
combination of basic surface variables, such as spectral reflectance, albe-
do, land surface temperature, vegetation index, leaf area index, active
fires, burned area, snow and ice cover and net primary production.
Products of MOD11A2 (land surface temperature of daytime, LST_D
and land surface temperature of night, LST_N), MOD13A1 (normalized
difference vegetation index, NDVI), MOD16A3 (evapotranspiration,
ET) and MOD17A3 (net primary productivity, NPP) were used in this
study. Intra-annual variance of the NDVI (VNDVI) was computed from
the NDVI. NDVI and NPP are factors used to indicate vegetation informa-
tion. Vegetation is the key source of the SOM, thus NDVI and NPP have
been successfully used to predict soil organic carbon/matter (Bou
Kheir et al., 2010). However, human activities sometimes may weaken
the relationship between vegetation and SOM distribution (Kunkel
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Fig. 1. Soil sample locations across the Northeast and North China Plain.
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