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A major challenge in the design of new herbicides lies in the development of highly active, environmentally
friendly compounds. Soil sorption is an ecotoxicological parameter used to probe the prospective environmental
fate of persistent organic pollutants, such as some herbicides. This parameter, described in terms of logKoc (the
logarithm of the soil/water partition coefficient normalized to organic carbon), is usually estimated using the
octanol/water partition coefficient (logP, easily calculated or determined experimentally). However, estimations
obtained with the logP are not always accurate. Thus, this work reports the use of molecular descriptors derived

lc(zm(;rjls ilerbicides from multivariate image analysis of carbonyl herbicides to achieve a predictive classification model based on the
Soil sorption partial least squares-discriminant analysis (PLS-DA) method. This model yields 80% accuracy in calibration, 75%
Aug-MIA-SPR in leave-one-out cross-validation and 100% in external validation. In addition, the Y-randomization test reveals
PLS-DA that the obtained model is stable from fortuitous correlation, since the accuracy in calibration after shuffling

the classes block is only 0.5%. Chemical interpretation in terms of the structural features that affect soil sorption
is performed, based on the weights of the selected variables in the classification model. Finally, novel herbicides
are rationally designed, based on the inferences arrived at in the structural interpretation experiment and predic-
tions of their qualitative and quantitative soil sorption profiles performed, using the built aug-MIA-SPR and
Wang's models, respectively.

© 2016 Published by Elsevier B.V.

1. Introduction

Herbicides play an important role in weed control, but may persist in
the environment and, consequently, accumulate in the food chain, caus-
ing serious health problems (Corsonlini et al., 2005). While some herbi-
cides accumulate in water, thus affecting principally aquatic organisms
through bioconcentration (Kehrig et al., 2011), others interact strongly
with soil, presenting high soil sorption, which is described in terms of
the logarithm of the soil/water partition coefficient normalized to organic
carbon — logKoc. This physicochemical parameter can be estimated using
the easily calculable or measurable octanol/water partition coefficient,
logP. However, univariate models based on logP for the prediction of
logKoc have not shown to be useful in the prediction of the soil sorption
of many classes of herbicides (Sabljic et al., 1995; Freitas et al., 2014a,
2014b). Thus, more descriptive variables should be used to estimate/
predict the logKoc of chemical structures with herbicidal activity.

In this sense, the multivariate image analysis (MIA) method has
emerged in the last decade as a successful source of descriptors, which

Abbreviations: Aug-MIA-SPR, augmented multivariate image analysis applied to
structure-property relationships; PLS-DA, partial least squares-discriminant analysis;
logKoc, logarithm of the soil/water partition coefficient normalized to organic carbon;
LOOCV, leave-one-out cross-validation.
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have been used to model bioactivities and physicochemical parameters
of a variety of compounds (Antunes et al., 2008; Nunes and Freitas,
2013a; Goodarzi et al., 2009; Goodarzi and Freitas, 2008, 2009). The
descriptors in MIA are pixels (numerical data) of superimposable
bidimensional chemical images (of a congeneric series of molecules),
whose variance from an image to another (in terms of pixel coordinates
representing different groups or substituent positions) explains the
fluctuation in the response for a series of compounds. The MIA descrip-
tors have been upgraded from molecules drawn as wireframes (Freitas
et al., 2005) to colored and more realistic chemical representations
(Nunes and Freitas, 2013b). Such a scheme has been recently used to
model the soil sorption of aromatic herbicides, allowing for the compre-
hension of the structural characteristics responsible for high/low soil
sorption (Freitas et al,, 2015).

Recently, the so called aug-MIA descriptors have been extended to
classification tasks using principal component analysis (PCA), hierarchical
cluster analysis (HCA) and partial least squares-discriminant analysis
(PLS-DA), giving rise to predictive aug-MIA-SAR models (Duarte et al.,
2015). This qualitative analysis can be useful when quantitative response
variables are not accessible or significantly inaccurate (in which case
averaged values yield relatively high residuals), rendering regression for
quantitative analysis impractical. In the present aug-MIA-SPR modeling,
carbonyl herbicides (amides, carbamates, thiocarbamates and ureas)
were evaluated because of their wide range of applications and the poor
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Fig. 1. Superposed chemical images of herbicides used in the aug-MIA-SPR modeling.
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correlation of logKoc with logP for some of these compounds (Sablji¢
et al, 1995). Despite the high predictive ability of some QSPR models
(Schiitirmann et al., 2006; Wang et al., 2009), the chemical interpretation
indispensable to rationally design new herbicide candidates has not been
straightforward, which can be easily assessed using our proposed SPR
model.

2. Material and methods

A series of 26 carbonyl herbicides pertaining to amides, carbamates,
thiocarbamates and ureas was obtained from the literature (Mackay
et al.,, 1997) and the corresponding chemical structures drawn using
the GaussView program (Dennington et al., 2008), with the carbonyl
group considered as the common basic moiety for 2D alignment. It is
worth mentioning that more than 20 compounds are recommended
for SPR purposes (Young, 2009) and, therefore, the present dataset
fulfills this requirement. Fig. 1 presents the superposed 26 chemical
images to illustrate the variance in the chemical space, as well as the
carbonyl group as the congruent substructure for alignment purposes.
The spheres representing atoms in molecules were designed to be
proportional to the respective van der Waals radii and each chemical
structure (image) was saved as bitmaps (bmp) files in a workspace of
612 x 441 pixel dimension using the Microsoft Windows Paint applica-
tion. The images were numerically transformed according to the RGB
color system, in which each atom color is the result of a contribution
from red (255), green (255) and blue (255) components; thus, the
colors vary from black (zero) to white (765, the sum of all three compo-
nents). This procedure was performed using the Chemoface program

Table 1

Herbicides and the respective classification according to the soil sorption. Compounds
marked with asterisk (*) pertain to the test set (external validation) and were selected
through Kennard-Stone sampling.

Cpd no Herbicide Class Cpd no. Herbicide Class
1 Chlortoluron 2 14 Butachlor 2
2 Diuron 2 15 Metolachlor 2
3 Fenuron 1 16 Propachlor® 2
4 Fluometuron 2 17 Propanil* 2
5 Isoproturon 2 18 Diphenamid* 2
6 Monuron 1 19 Pronamide 2
7 Neburon 3 20 Butylate 2
8 Monolinuron 2 21 Diallate 3
9 Linuron 2 22 Triallate* 3
10 Barban 3 23 EPTC* 2
11 Chlorpropham 2 24 Pebulate 2
12 Propham 1 25 Molinate 2
13 Alachlor 2 26 Vernolate* 2

Table 2

Statistical results for the aug-MIA-SPR/PLS-DA modeling.
Parameter Value
Variables 3
Calibration success (%) 80
Y-randomization success (%) 0.5
Leave-one-out success (%) 75
External validation success (%) 100

(Nunes et al.,, 2012), giving a 612 x 441 data matrix for each molecule.
The 26 matrices were merged to give a 26 x 612 x 441 tridimensional
array. Later, the 3D-array was unfolded to yield a [26 x (612 x 441)]
matrix.

A step-wise variable selection procedure, considering both relevance
(in Shannon's entropy terms) and orthogonality, was applied to the
unfolded matrix yielding a lower dimensionality data matrix, capable
of capturing the essence of the system using a minimum number of
variables and allowing for greater model interpretability. Given the
disparity in the logKoc values reported for the same herbicides in the
literature, a pattern recognition model using PLS-DA was exploited
rather than a quantitative one. This method is based on the transforma-
tion of the original variables in latent variables, and these are linearly
independent (Chevallier et al., 2006; Neto and Moita, 1998). These
latent variables are linear combination of original variables. The prefer-
ence of PLS-DA to linear discriminant analysis (LDA) is to profit from the
score plots obtained with the former as these allow for a straightfor-
ward assessment of the contribution of the different variables in the
stratification of compounds according to their properties. Later, these
variables may be examined for the chemical information codified in
terms of the functional groups or substructures relevant for the studied
property. Note that when the variables constituting an LDA model are
orthogonal, the PLS-DA and LDA techniques yield the same results
(Wold et al., 2001).

Based on the average logKoc values obtained from the literature
(Mackay et al., 1997; Kenaga and Goring, 1980; Liu and Qian, 1995),

Table 3
Selected variables and the corresponding pixel values according to the RGB color system
encoding atom types (289 = chlorine; 426 = carbon; 612 = hydrogen; 765 = blank
space).

Cpd no X3100 X4543 X4148 Class®
1 765 765 289 2
2 765 765 289 2
3 765 765 765 1
4 765 765 765 2
5 765 765 765 2
6 765 765 765 1
7 765 426 289 3
8 765 765 765 2
9 765 765 289 2
10 765 765 289 3
11 765 765 289 2
12 765 765 765 1
13 765 765 765 2
14 765 765 765 2
15 765 765 765 2
16 765 765 765 2
17 765 765 289 2
18 765 765 765 2
19 426 289 765 2
20 612 426 612 2
21 765 426 765 3
22 765 426 765 3
23 612 426 612 2
24 612 426 765 2
25 612 765 765 2
26 612 426 612 2

@ Classes: 1 = low soil sorption; 2 = medium soil sorption; 3 = high soil sorption.
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