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Raman spectroscopy has been rarely applied in soil characterization due to the interference of fluorescence
resulting from soil organic matter (SOM). However, valuable structural information is likely stored in the soil
Raman spectra. This study was undertaken to investigate the potential of Raman spectroscopy in soil identifica-
tion as an alternative tool to traditional methods, and the partial least squares (PLS) model was developed from
Raman spectra to make a quantitative prediction of SOM. Diverse soil samples (n= 200) representing four typ-
ical farmlands in China were scanned with a portable Raman spectrometer (i-Raman® Plus, USA) from the spec-
tra range of 180 to 3200 cm−1. The Raman shift range of 1000–2000 cm−1 was selected to establish an
identification model. Probabilistic neural network (PNN) combined with principal component analysis (PCA)
of the spectra data was employed to identify 200 soils and an acceptable result was obtained with an accuracy of
96% in validation. The PLS model with cross-validation was constructed to predict the content of SOM, and the
best prediction model was calculated using spectra with the linear exclusion in selected range (RPDv = 1.92,
Rv2=0.74, and RMSEP=8.16 g kg−1). This study illustrates that soil Raman spectra contain information of soil con-
stituents even in the presence of fluorescence interference; moreover, it demonstrates that this contained informa-
tion can play a vital role in the characterization of symmetric structures of SOM, which can provide complementary
knowledge to understand molecular structure of SOM that infrared spectroscopy cannot offer.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

As a composition of mineral particles, humus, liquids, gas, and living
organisms, agriculture soil plays a vital part in food production and en-
vironment health protection and agro-ecosystem balance. Soil organic
matter (SOM) is a heterogeneousmixture of organic residue fromplants
and animals in the soil (Bardy et al., 2008; Deshmukh et al., 2007). Over
90% of the N and S, and 75% of P are contained in the organic matter of
the topsoil (Olk, 2006). As the major reservoir of terrestrial carbon
(Ferreira et al., 2014; Wang et al., 2015), certain amounts of organic
matter are stored in agriculture soils for both the preservation of soil
fertility and the improvement of the soil structure (Tobiasova, 2011).

The demand for the efficient identification and organic matter
prediction of arable soil has been increasing with the development of
precision agriculture. However, the routine physicochemical analysis
of soil is time and labor consuming, and faces challenges in seeking
structure information. Furthermore, the massive chemical reagents
used can increase risks for both the operators and ecological environ-
ment. These deficiencies are mainly responsible for the development
of rapid determination methods for soil analysis.

Raman spectroscopy is a technology stemming from the inelastic
scattering of light, which reflects molecular vibrational and rotational

modes. The advantages include not only being nondestructive, cost-
efficient, easy for sample preparation, and less exposure to hazardous
chemicals compared to conventional laboratory chemical determina-
tion, but also has unique independence from water interference
compared to infrared spectroscopy (Barancikova, 2008; Martins et al.,
2011; St Luce et al., 2014; Zimmermann et al., 2007). However, the
widespread application of Raman spectroscopy is limited due to the
fluorescence effect of soil, which often weakens or even masks Raman
signals and further complicates the extraction of spectral information.
Lowering the excitation energy, pretreating soils with an oxidative
method, and absorbing samples to metal matrix are some common
means to reduce fluorescence influence and enhance the Raman signal
proposed in previous researches (Edwards et al., 2012; Francioso et al.,
2000; Luna et al., 2014). With these methods, researchers have sug-
gested that Raman spectroscopy could be particularly available in
reflecting skeletal vibrations of both aliphatic and aromatic fractions of
soil components, which may be helpful to further reveal the structure
of soil (Carrero et al., 2012; Leyton et al., 2008; Ribeiro-Soares et al.,
2013). The progress on the application of Raman spectroscopy in soil
science was elaborated in a review paper by Parikh et al. (2014).

Nonetheless, to date, there have been fewstudies focused on original
Raman spectra under a fluorescence background. The relationship
between soil Raman spectra and chemical properties have been rarely
reported in the open published literature. In this study, we consider,
for the first time, that the information contained in the original soil
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Raman spectra can be used in characterizing arable soil, and the specific
objectives of this study are: (i) to summarize the Raman spectra fea-
tures of different soils, (ii) to perform soil identifications using spectral
principal component analysis (PCA) and probabilistic Neural Network
(PNN) model, and (iii) to build the prediction model for SOM based
on Raman spectra.

2. Materials and methods

2.1. Soil samples

200 soil samples were collected from the top layer (0–20 cm depth)
of typical farmlands in China. Field samplingwas performed before crop
establishment and consisted of four different soil types: black soil from
Heilongjiang Province, paddy soil from Jiangsu Province, red soil from
Jiangxi Province, and Fluvo-aquic soil from Shandong Province. All
sampling plots were geo-referenced using GPS.

2.2. Laboratory analyses

2.2.1. Chemical methods
All bulk soils were submitted to the laboratory, air dried at room

temperature (25 ± 2 °C), homogenized, and ground through a 2 mm
mesh sieve prior to analysis. SOM was chemically determined using a
potassium dichromatic oxidation titration method (Walkley and Black,
1934).

2.2.2. Raman spectra acquisition and spectra pretreatments
Raman spectra of the soils were recorded for each soil at 1 cm−1

intervals over the range 180–3200 cm−1 using a portable Raman
Spectrometer (i-Raman® Plus, USA) with the thermoelectric cooled
charge-coupled device detector (TEC-CCD). The excitation wavelength
was 785 nm and the resolution was 4.5 cm−1. The same integration
time of 60,000 ms was adopted for measuring the spectra of all the
soils. In the process of samplemeasurement, each soil samplewas thor-
oughlymixed and placed in a plastic zip-lock bagwith a length of 60 cm
and width of 10 cm for laser irradiation (the laser was verified to pass
through the zip-lock bag). Dark current was measured before each
test of the soil samples to enhance the signal-to-noise ratio. For each
sample, the spectra was automatically measured three times in situ
and then averaged for further analysis.

Themeasured spectrawere smoothed using Fourier transformfilter-
ing (FFT) before data transformation to minimize the systematic noise,
and the number of spectra variables was reduced from 3022 to 1000
from this operation. Prior to PCA analysis, linear baseline exclusion
was performed using the software PeakFit v4.12 in the spectra range
of 1,000 to 2000 cm−1 to mitigate disturbances from environments
and experimental operations. The function ‘map std’ in Matlab 2013a
was performed, and by which the input and target data can be trans-
formed to a uniform scale bymapping its mean and standard deviations
to 0 and 1, respectively (Du et al., 2010).

2.3. Statistical analysis

2.3.1. Probabilistic neural network (PNN)
The probabilistic neural network (PNN) model was built in this

study for soil identification. The PNN algorithm was first introduced
by Donald Specht (Kusy and Zajdel, 2014)., it is a feed forward network
for pattern recognition with a faster training rate and higher prediction
accuracy than traditional neural networks (Bhatt and Helle, 2002).
Based on a Bayesian classification rule, and the approach realizes pat-
tern prediction by constructing best correlations from the input data.
A typical PNNmodel sequentially consists of input layers, pattern layers
(model layers), sum layers, and output layers (contest layers) (Fig. 1). xk
(k= 1, 2…n) denotes the feature vectors to be input and yk (k= 1, 2…
n) denotes the output vectors (Hampson et al., 2001; Jeong et al., 2014).

The neurons of the input layers, which are responsible for receiving and
linearly transferring the variables to pattern layers, equal in amount to
the dimensions of the feature vectors of the learning samples. The num-
bers of nodes in the pattern layers are determined by the product of the
input samples and categories to be matched with. The pattern layer is
designed to calculate the matching relation between the feature vector
and the samples of the training data. And then the sum layers add the
input data from the same type of pattern layers to obtain themaximum
probability that the input samples are within this category. By receiving
various probability density functions from the sum layers, the output
layers present the final judging results (Li et al., 2010).

150 soil samples (75% of total soil samples) were randomly selected
to train the network, and the remaining 48 samples (approximately
25%) were used for model validation. The PNN model was configured
in Matlab R2013a using the code “net = Newman (p, t, Spread)”,
where p represented the input vectors, which referred to the first ten
PC scores, and t represented the target vectors, the four soil groups.

2.3.2. Partial least squares regression (PLSR)
In this study PLSR was implemented in Matlab 2013a software to

relate the soil Raman intensity to the measured SOM. PLSR is one of
the most commonly used multivariate algorithms for regressing in the
analysis of spectral data (Shi et al., 2014). The PLSR algorithm can pro-
duce reliable prediction results by means of integrating independent
spectral variables with the properties studied. Information regarding
the PLS algorithm was detailed by Wold et al. (2001).

Soil samples were randomly split into 150 samples (75%) for the cal-
ibration (cross-validation) set and 50 samples (25%) for the validation
set. The statistics of the calibration and validation set for PLS models
are provided in Table 1. The optimal number of latent variables were
determined by leave-one-out cross validation for better model
construction while avoiding over-fitting (Awiti et al., 2008).

The performance of the constructed models are usually evaluated
using the coefficient of determination (R2) and root mean squared
error (RMSE) of the test sets. RMSE was calculated as Eq. (1):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
xi−yið Þ2;

r
ð1Þ

where (xi -yi) refers to the differences between the measured and
predicted values using PLSR and n is the number of samples. Another
commonly used parameter to assess the robustness of the model is the
ratio of performance to standard deviation (RPD value) (Wu et al.,
2010), which can be calculated by dividing the standard deviation of the
measured values by the standard deviation of the predicted values. In
soil science analysis, if RPD b 1.0, themodel is unacceptable for prediction

Fig. 1. Illustration of a probabilistic neural network (PNN), including input, pattern, sum
and output layers. xk (k = 1, 2…n) denotes the feature vectors to be input and yk (k =
1, 2…n) denotes the output vectors.
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