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Datasets for modelling andmapping soil properties often consist of samples frommany spatial locations, collect-
ed from several different soil depth intervals. However, interest may lie in the spatial distribution of the property
for a particular target depth interval, which may or may not correspond to the sampled intervals. It is the task
of the data analyst to put the data together in such a way that useful and reliable conclusions can be drawn for
the soil depths of practical interest. Previous studies to tackle this problem include multi-stage approaches
and point-data-based 3-dimensional geostatistical approaches. One disadvantage of a multi-stage approach —
for example, first fitting splines to the data for sampled profiles, then imputing new data for the target interval,
before considering a spatial analysis with the imputed data— is that the imputation generally ignores any uncer-
tainty in the imputed data, which might give misleading conclusions. Point geostatistical methods, on the other
hand, assume that the data represent the value of the target variable at a specific point in the profile, rather than
its average over a sampling interval; this too could givemisleading estimates. In thiswork,we present a statistical
method that properly deals with the sample support of soil profile data so that all data can be considered in a
single geostatistical analysis. The approach is based on the ‘area-to-point’ kriging framework, which can be
used to represent the uncertainty from data that are averages over non-negligible sample supports (in our
case, the different sampled depth intervals). We combine a covariance model for the increment-averaged data
in the vertical domain with another model for the horizontal variation. This enables us to (i). process all data
in a single analysis, and (ii). calculate predictions for any target depth and support based on the same statistical
model. We test the approach on data from the Murray–Darling basin in eastern Australia, where interest lies
in mapping various soil properties that could have an effect on water salinity of the nearby Muttama Creek:
we illustrate the methodology for predicting clay content. Finally we discuss a number of possible extensions
of the methodology to broaden its applicability, which should provide the basis of further studies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Soil properties vary significantly both across the landscape and
through the soil profile, and interest lies in characterizing and mapping
this variation to provide land users with useful information. Datasets
often consist of samples frommany spatial locations, at several different
depth intervals. Within a particular study, these depth intervals may
be fixed (e.g. 0–10 cm, 10–20 cm, and 20–30 cm). Other studies may
consider different fixed intervals, or sampling intervals that are defined
according to soil horizons and therefore vary between locations within
the study. It is then the task of the data analyst to draw useful and
reliable conclusions for soil depths of practical interest. For example,
the GlobalSoilMap project specifications (Arrouays et al., 2014) dictate
that soil properties should be mapped for depth intervals of 0–5 cm,
5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm.

Various approaches have been adopted previously to perform this
task. A common approach is to fit splines to the profile data for each
site (Bishop et al., 1999), use the spline to impute ‘data’ for the soil prop-
erty over the depth interval of interest, and then proceed with the anal-
ysis as if the value were known without error (e.g. Malone et al., 2009,
2011a; Adhikari et al., 2013; Orton et al., 2014; Bishop et al., 2015).
We refer to this as a ‘spline-then-krige’ (STK) approach. This process
does not account for the uncertainty in the values inferred from the
spline, and could yield misleading conclusions.

Another possible approach to the problem is 3-dimensional (3-D)
geostatistics. However, this has been applied as if the data collected
from soil depth intervals were concentrated at a single point (e.g.
Hengl et al., 2014), at either one of the bounds of the sampling interval,
or at the interval's mid-point. This approach also fails to properly repre-
sent the support on which the data were originally collected (over an
interval, rather than from a point), and could again yield misleading
conclusions. Breidt et al. (2007) recognized the dangers of using mid-
point assignment to represent increment-averaged data, and proposed
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amixed-model approach for estimating depth functions, whilst proper-
ly accounting for the interval support of the data; their focus was on the
estimation of depth profiles, whereas our focus is more on the use of
such data for modelling and mapping using spatial datasets of soil
horizon data. Other 3-D approaches (e.g. Poggio and Gimona, 2014;
Veronesi et al., 2012) generally suffer the same drawback; all data are
assumed to have identical vertical support, which ignores their different
uncertainties.

In a geostatistical framework, the sample support of data that are
averages of an attribute over non-negligible areal units can be dealt
with by area-to-point kriging (ATP kriging; Kyriakidis, 2004). This
method allows the sampling units and prediction supports to all have
different sizes and shapes. It has been applied in several case studies
in recent years to analyse areal-averaged data (Kyriakidis and Yoo,
2005; Kerry et al., 2012; Schirrmann et al., 2012; Truong et al., 2014).
Although usually carried out to account for the horizontal support (i.e.
the data are areal averages), there is no reason that the samemethodol-
ogy cannot be carried out to deal with the vertical support of soil profile
data (i.e. for data that are measurements of the average value of a soil
property over depth intervals). This was noted in Heuvelink (2014),
although we are unaware of any studies that have implemented such
an approach.

In this work, we combine the ATP approach for the vertical distribu-
tion with standard kriging approaches for the horizontal distribution.
Thus, a statistical model for the complete dataset (all spatial locations
and all depth intervals) is defined, with the support of each datum (a
combination of spatial location and depth interval) properly represent-
ed.We refer to this model for increment-averaged data, and the predic-
tions built on the model, as increment-averaged kriging (IAK). We
propose that this all-in-one model should provide a better assessment
of prediction uncertainty compared with a two-stage approach, or an
approach that represents interval data by their mid-points (although
comparison of the different methodologies is not undertaken in the
current study).

We consider the methodology in the framework of a linear mixed
model (LMM; Lark et al., 2006). Thus, part of the variation of the target
variable can be explained by a collection of explanatory variables, with
the remainder being modelled as spatially dependent (i.e. data close
to each other in horizontal space and at similar depths are more likely
to be similar than data far apart in space and at different depths). We
allow interactions between depth and the spatial explanatory variables,
so that different relationships can bemodelled at different depths in the
profile.We also allow the variance parameters of residuals to dependon
depth, which provides amechanism to represent different uncertainties
at different depths in the profile.

Usually in ATP-kriging studies, the average covariances must be
calculated numerically (by a discretization approach), due to the com-
plex nature of the areal data units in 2-D space. However, for our
increment-averaged data, the average covariances can be computed
analytically. We derive an expression for the covariance of the
increment-averaged data, based on an exponential model for the point
covariances. This significantly reduces the computational load of maxi-
mum likelihood methods compared with numerical procedures. None-
theless, for large datasets (when the total number of data is more than a
few thousand), likelihood approximation techniques may have to be
used (e.g. Stein et al., 2004; Eidsvik et al., 2014); we do not consider
these here though.

We test the proposed IAK approach on data from the Murray–
Darling basin in eastern Australia, where interest lies in mapping
soil properties that could have an effect on water salinity of the
nearby Muttama Creek. Soil cores (to a depth of 1 m) were collect-
ed from 55 spatial locations over the Muttama catchment, and each
core was divided into horizons, giving a total of 192 samples. We
use this case study to illustrate the IAK approach, mapping clay
content and its attendant uncertainty based on the data from
these samples.

2. Theory

Throughout the following, we will assume that the horizontal
support of the data and of the prediction is point support. The method
can be extended to deal with data that are both areal- and depth-wise
averages, if this were to be required in another study. We begin our
presentation of the methodology with a simple stationary model for
the point covariances. We then extend this model to a more realistic
one, allowing variances to depend on depth, before describing how
this relates to the average covariances required to model the variation
of increment-averaged data.

2.1. IAK model: initial stationary model for point covariances

We begin our development towards a statistical model for the anal-
ysis of depth interval-averaged data by considering a 3-D model for
point data (i.e. with depths, d, taken to be fixed points):

y x; dð Þ ¼ μ x; dð Þ þ ε x;dð Þ ð1Þ

where x are the horizontal coordinates. We use a linear model of some
known covariates to give the trend function, μ(x, d), which can be
written as:

μ x;dð Þ ¼ X x; dð Þβ ð2Þ

where X(x, d) contains the known values of the covariates and β is the
vector of associated parameters (to be estimated). This is known as the
fixed-effect function, and X(x, d) constitutes a row of the fixed-effect
design matrix. We assume that the residuals, ε(x, d), follow a multivar-
iate normal distribution with mean zero and covariances depending
only on the horizontal and vertical separation distances (this assump-
tion will be relaxed in Section 2.2). As a first approach, we assume a
separable (product) covariance model (De Iaco et al., 2011):

Cov Y x;dð Þ;Y x 0; d 0ð Þ½ � ¼ σ 2 φx hx;ϑxð Þφd hd;ϑdð Þ ð3Þ

where φx(hx; ϑx) is a correlation function for any pair of observations
separated by distance hx = |x ' − x|, and φd(hd; ϑd) is another correla-
tion function of the vertical separation distances, hd = |d′ − d|. The
parameter, σ 2, is the variance. This simple model assumes that the
covariances can be written as the product of a function that depends
only on the horizontal separation distances, and one that depends
only on the vertical separation distances. Although this can be restric-
tive, it provides a useful starting point, and we suggest possible alterna-
tives in the discussion.

In theproduct covariancemodel,we can choose any permissible cor-
relation functions (see e.g. Webster and Oliver, 2001) for φx(hx; ϑx)
and φd(hd; ϑd). However, as Truong et al. (2014) point out, there is no
information in areal-averaged data (or in our case, depth interval-
averaged data) to define a nugget effect. We therefore assume that the
depth-wise correlation function, φd(hd; ϑd), has zero nugget, and
model it with a single spatial autocorrelation structure. We can still
include a nugget effect for the horizontal variation though, and we
write φx(hx; ϑx) as the sum of a nugget component and Nm spatial
autocorrelation structures:

φx hx; ϑxð Þ ¼ s0 φx;0 hxð Þ þ
XNm

i¼1

si φx;i hx; ϑx;i
� � ð4Þ

where:φx;0ðhxÞ ¼ f10
if hx ¼ 0
otherwise is the nugget correlation function;

φx;i(hx ; ϑx;i), i=1,…,Nm, areNm spatial correlation functions,with
parameter vectorsϑx;i; parameters si, i=1,…,Nm are theproportions of
variance associated with each of the Nm spatial correlation functions;
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