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In this rapid communication, we address two important issues regarding the calculation of fragment mass-size
distribution fractal dimension. We particularly focus on particle-size distribution, as a special case of fragment
mass-size distribution, and demonstrate that the arithmetic mean concept frequently used in the literature is
not supported. We also show that ignoring lower and upper cutoffs of fractal scaling may significantly alter the
mass fractal dimension value. For these purposes, two examples using experiments available in the literature
are given, and critical analyses are discussed in detail. We also reanalyze three databases reported in the litera-
ture, recalculate the mass fractal dimension, and show that applying the arithmetic mean concept and/or ignor-
ing the lower and upper cutoffs may result in substantially different fractal dimension values. We note that the
lower and upper cutoffs have to be reported in addition to the mass fractal dimension value. We also emphasize
that accurate determination of the fractal scaling parameters, such as fractal dimension and lower and upper cut-
offs requires precise characterization of the mass-size distribution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Natural soils are mixtures of particles (solid grains) and aggregates
(porous fragments) that are made up of particles. Aggregates form by
building-up (e.g., cementation and cohesion) processes and are
destroyed by breaking-down (e.g., tillage) mechanisms. The breaking
of soil aggregates into smaller pieces or fragments is called fragmenta-
tion, which is a typical phenomenon in nature occurring due to external
stresses, such as tillage (Perfect et al., 2002). The fragmentation process
depends mainly on the parent materials and the fragmentation type
e.g., scale invariant (Perrier and Bird, 2002).

Although various fractal fragmentation models have been proposed
in the literature, such as Turcotte (1986) and Perfect et al. (2002), in this
study we apply the pore–solid fractal (PSF) model. In this model, three
phases exist: pore (P), solid (S), and fractal (F). The fractal phase is the
only one iterated in the fractal construction procedure (see Fig. 1). In
each iteration, regions previously assigned to the fractal phase are ran-
domly partitioned into P, S, and F; the fractional value assigned to
each phase does not change across iterations, and P + S + F = 1
(Ghanbarian et al., 2015).

Based on the PSF approach (Perrier et al., 1999), Perrier and Bird
(2002) developed a scale-invariant fragmentation model. According to
their model, aggregate- and particle-size distributions represent

incomplete and complete fragmentation processes, respectively. In the
PSF approach framework, the fragmentation fractal dimension is given
by (Perrier and Bird, 2002)

D f ¼
D log pFð Þ
log Fð Þ ð1Þ

where F is the fractal portion in the PSF model, p is the fragmentation
probability (the probability that a PSF unit fragments at each scale),
and D is the mass fractal dimension (fractal dimension of particle-size
distribution). For incomplete fragmentation, p b 1, and thus Df b D. For
complete fragmentation, p = 1, meaning all aggregates break down
into primary particles and therefore the fragmentation fractal dimen-
sion Df = D.

Following Perrier and Bird (2002), the cumulativemass of fragments
of size Ri and smaller, M(bRi), is given by

M bRið Þ
Mt

¼ αD−E Ri

L

� �E−D f

; Rmin≤Ri≤Rmax ð2Þ

where α b 1 is the scaling factor (the similarity ratio of the partitioning
process in the PSF model), E is the Euclidean dimension (E=3 in three
dimensions), Mt is the total mass of fragments, L is the initiator size
(Rmax = αL, in which Rmax is the largest fragment size), and Rmin and
Rmax are the lower and upper cutoffs. Natural porous media, such as
soils and rocks showing self-similar behavior, may lose their fractal
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properties below and above the lower and upper cutoff scales, as we
demonstrate.

The distribution for primary particles results from complete frag-
mentation (p= 1 and Df = D). Therefore, for the particle-size distribu-
tion, Eq. (2) reduces to (Perrier and Bird, 2002)

M bRið Þ
Mt

¼ Ri

Rmax

� �E−D

; Rmin≤Ri≤Rmax: ð3Þ

Eq. (3), widely applied to determine the mass fractal dimension D
(or fractal dimension of particle-size distribution), is the same model
derived by Turcotte (1986) and Tyler andWheatcraft (1992) using dif-
ferent methodologies. We should emphasize that M(bRi) in Eq. (3) is
the cumulative mass of particles below an upper limit, Ri, practically
the upper sieve size, and Rmax is the upper size limit (cutoff) for fractal
scaling (Tyler and Wheatcraft, 1992; Bittelli et al., 1999; Millán et al.,

2003; Filgueira et al., 2006). In several studies, however, Rmax has been
set equal to the largest measured particle size e.g., 1.5 mm (Bayat
et al., 2013), and 2 mm (Peng et al., 2014). We discuss this misconcep-
tion in the following.

In the literature, another form of Eq. (3) has been frequently applied
(see e.g., Su et al., 2004; Liu et al., 2009; Ai et al., 2012; Cao et al., 2013;
Xu et al., 2013):

M bRið Þ
Mt

¼ Ri

Rmax

 !E−D

ð4Þ

where Ri is themean particle size of the ith size class given by the arith-
meticmeanof theupper and lower sieve sizes, andRmax is the arithmetic
mean size of the largest size class. Strictly speaking, the power-law frac-
tal scaling Eq. (3) including Ri necessarily as the upper limit was devel-
oped theoretically. However, the arithmetic mean concept in Eq. (4) is
merely empirical and arbitrary, and Eq. (4) has never been derived
mathematically, to the authors’ knowledge.

In order to apply Eq. (4) to measured particle-size distribution, in
analogous fashion, the mean size of the particles smaller than 2 μm is
calculated as 1 μm (see e.g., Su et al., 2004; Zhang et al., 2009; Ai et al.,
2012; Cao et al., 2013). This means particles smaller than 2 μm follow
the same fractal scaling that particles larger than 2 μm do and thus
Rmin = 0. However, Wu et al. (1993) and Bittelli et al. (1999), among
many others, indicated that the whole range of the particle-size distri-
bution might be characterized by more than a single fractal regime,
which means that Rmin of each regime must have a finite, nonzero
value. As a consequence, setting the mean size of the particles smaller
than 2 μm equal to 1 μm is dubious and not supported. In addition, the
arithmetic mean concept used in Eq. (4) constitutes an internal

Fig. 1. Two-dimensional random pore–solid-fractal (PSF) models (generator on left and first iteration on right) proposed by Perrier et al. (1999) where P = 0.375 (pore phase portion),
S = 0.375 (solid phase portion), and F = 0.25 (fractal phase portion).
After Ghanbarian-Alavijeh (2014).

Table 1
Particle-size distribution of the Ariana soil (Rieu and
Sposito, 1991; Perrier and Bird, 2002).

Ri (mm) M(bRi) (kg)

1.79 0.10062
1.414 0.08667
1.118 0.06567
0.89 0.05316
0.71 0.04276
0.561 0.03336
0.4 0.02699
0.251 0.01799
0.141 0.01079

y = 0.884x - 1.223
R² = 0.997
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Fig. 2.Determination of the fractal dimension of the particle-size distribution using (a) Eq. (3), and (b) Eq. (4) for the Ariana soil. Fitting Eqs. (3) and (4) to themeasured data yieldedD=
2.116 (2.075, 2.157) and 2.266 (2.176, 2.357), respectively (values in the parentheses are the 95% confidence bounds).
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