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In this study we evaluated whether investing in more spatially detailed environmental covariates improves the
accuracy of digital soil maps.We used a case study from Southern Brazil tomap clay content (CLAY), organic car-
bon content (SOC), and effective cation exchange capacity (ECEC) of the topsoil for a ~ 2000 ha area located on
the edge of the plateau of the Paraná Sedimentary Basin. Five covariates, each with two levels of spatial detail
were used: area-class soil maps, digital elevation models (DEM), geologic maps, land usemaps, and satellite im-
ages. Thirty-two multiple linear regression models were calibrated for each soil property using all spatial detail
combinations of the covariates. For each combination, stepwise regression was used to select predictor variables
incorporated in the model. Model evaluation was done using the adjusted R-square of the regression. The base-
line model, calibrated with the less detailed version of each covariate, and the best performing model were used
to calibrate two linear mixed models for each soil property. Model parameters were estimated using restricted
maximum likelihood. Spatial prediction was performed using the empirical best linear unbiased predictor.
Validation of baseline and best performing linear multiple regression and linear mixed models was done using
cross-validation. Results show that for CLAY the prediction accuracy did not considerably improve by using
more detailed covariates. The amount of variance explained increased only ~2 percentage points (pp), less
than that obtained by including the kriging step, which explained 4 pp. On the other hand, prediction of SOC
and ECEC improved by ~13 pp when the baseline model was replaced by the best performing model. Overall,
the increase in prediction performancewasmodest andmay not outweigh the extra costs of usingmore detailed
covariates. It may be more efficient to spend extra resources on collecting more soil observations, or increasing
the detail of only those covariates that have the strongest improvement effect. In our case study, the latter
would only work for SOC and ECEC, by investing in a more detailed land use map and possibly also a more de-
tailed geologic map and DEM.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Digital soil mapping relies on the use of statistical models to produce
digital representations of spatial soil distribution using point soil observa-
tions and spatially exhaustive environmental covariates (McBratney et al.,
2003; Scull et al., 2003; Florinsky, 2012). Three important weaknesses in
the statistical soil distribution modelling approach can be pointed out.
First, it requires sufficient and appropriately distributed point soil data
within the area being mapped (Carré et al., 2007). Second, the model
structure explores only the empirical relationship among environmental

conditions and soil properties, being less comprehensive than soil-
landscape process models (Grunwald, 2009). Last, the covariates are
only approximations of the true environmental conditions that helped
shape the soil. They serve only as proxies (surrogates) of the current en-
vironmental conditions, which in many cases are different from the past
conditions under which pedogenesis took place (Heuvelink and
Webster, 2001). In spite of these weaknesses, digital soil mapping has
proven very successful in the past decades in producing soil property
maps that capture the main patterns of soil spatial variation (Moore
et al., 1993; McBratney et al., 2000; Grunwald, 2009).

More recently, there has been growing interest in understanding
how the characteristics of the environmental covariates influence the
success of digital soil mapping — this study contributes to this effort. It
is commonly accepted that the more resources are spent on the con-
struction of a covariate and the more spatial information it has, the
more accurately it describes the environmental conditions (Hupy
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et al., 2004; Hengl et al., 2013). It is also generally believed that such
more detailed covariates will be more valuable for digital soil mapping
and lead to more accurate soil property predictions (Cavazzi et al.,
2013; Maynard and Johnson, 2014). If these more detailed covariates
convey more information and represent more adequately the environ-
mental conditions — the drivers of soil forming processes —, then it is
fair to expect that they improve the accuracy of the resulting soil
maps. However, some studies have shown the contrary (Thompson
et al., 2001; Eldeiry and Garcia, 2008; Kim et al., 2014). For example,
the window size at which DEM derivatives are calculated can be more
important than the spatial resolution of the DEM (Wood, 1996; Zhu
et al., 2008; Behrens et al., 2010). The uncertainty about the added
value of using more detailed covariates is of concern for those seeking
to use resources efficiently, because usingmore detailed covariates gen-
erally increases soil mapping costs (Shi et al., 2012).

The objective of this study was to evaluate whether investing in
more detailed environmental covariates improves the accuracy of
digital soil maps. The main difference of our study to previous ones
is that we use a rigorous statistical approach to assess the added
value of using five more detailed covariates simultaneously. We
used a case study in Brazil to compare the accuracy of digital maps
of the clay content, organic carbon content and effective cation ex-
change capacity of the topsoil as obtained from regression kriging
on the five covariates, whereby each covariate was evaluated on
two levels of spatial detail.

2. Material and methods

2.1. Study area and soil data

The study area constitutes a small catchment (~2000 ha) located
on the southern edge of the plateau of the Paraná Sedimentary Basin,
Rio Grande do Sul, Brazil (Fig. 1). The climate is classified as Cfa
(Köppen— subtropical humid without a dry season) with amean an-
nual temperature of 19.3 °C, and mean annual precipitation of
1708 mm, well distributed throughout the year (Maluf, 2000). Relief
varies between plain (slope between 0 and 3%) and mountainous
(slope between 45 and 100%), and elevations range between 140
and 475 m. Geology consists of basic, intermediate and acid igneous
rocks (rhyolite-rhyodacite and andesite-basalt) of the Cretaceous
period, consolidated sedimentary rocks (aeolian and fluvial
sandstones) of the Triassic and Jurassic periods, and non-
consolidated (fluvial and colluvial deposits) of the Quaternary peri-
od (Gasparetto et al., 1988; Maciel Filho, 1990; Sartori, 2009). Native
semi-deciduous forests occupy more than half of the area, followed
by native grassland used for animal husbandry, semi-deciduous
shrubland, annual crop agriculture, forestry (Eucalyptus), urban
areas, and artificial water bodies (Samuel-Rosa et al., 2011).

A dataset containing n = 350 point soil observations collected be-
tween 2004 and 2011 (Pedron et al., 2006; Samuel-Rosa et al., 2011;
Miguel et al., 2011; Samuel- Rosa et al., 2013b) was used in this study
(available at http://soil-scientist.net). Sampling locations were selected
purposively and by convenience (Samuel- Rosa et al., 2014a). Three soil
pits were openedwithin an area of about 100m2 atmost sampling loca-
tions to obtain composite samples of the topsoil for laboratory analysis.
Soil was collected to a depth of 20 cmor lesswhen soil depthwas small-
er than 20 cm. A few observations (n = 10) correspond to individual
samples collected up to 30 cm. Sampling depth ranges from 2 to
30 cm,with amean of 17.3 cm.We assumed that the vertical, horizontal
and temporal support differences between soil samples are negligible
for the purpose of this study.

Three soil properties (fine earth fraction, b2 mm) were explored:
clay content (CLAY, g kg−1), organic carbon content (SOC, g kg−1),
and effective cation exchange capacity (ECEC, mmol kg−1). CLAY was
determined by the pipette method. SOC was determined using wet
digestion. ECEC was calculated as the sum of exchangeable bases plus

exchangeable acidity. The soil properties selected were expected to
present different patterns of spatial variation and correlation with the
most dominant factors of soil formation (Jenny, 1994) in the area: or-
ganisms (O), relief (R), and parent material (P). CLAY was presumed
to have a stronger relation with P, while SOC was expected to be more
correlated with O. Because the soils of the study area were strongly
eroded due to intense agriculture in the 20th century, both CLAY and
SOC were also expected to be closely related with R. Finally, ECEC was
expected to be strongly correlated with P and O, which is supported
by its natural relationship with both CLAY and SOC.

Point soil data, here denoted by Z(s), where Z is the soil property and
s geographic location, showed a positive skew (Fig. 2) andwere normal-
ized, Z′(s), using the Box–Cox family of power transformations, where
Z′(s) = (Z(s)λ − 1) / λ, if λ N 0, and Z′(s) = log(Z(s)), if λ = 0 (Diggle
and Ribeiro Jr., 2007). Lambda (λ) values were selected empirically
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Fig. 1. Location of the study area in SantaMaria (a) and spatial distribution of the point soil
observations and drainage network (b).
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