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Spatial prediction of soil organic carbon (SOC) stock fromconcentration and bulk densitymeasurements typically
employs a two-step procedure. First, SOC concentration and bulk density data are used to calculate the SOC stock
at each data location. Second, the calculated SOC stock at each data location is interpolated to give predictions at
unsampled locations, often by applying a univariate geostatistical method to the stock. We refer to this as a
‘calculate-then-model’ approach. In this study, we investigate an alternative method to predict SOC stock at
unsampled locations, based on a ‘model-then-calculate’ approach. We first consider the spatial covariation of
the SOC concentration and bulk density data. This covariation can bemodelled using amultivariate geostatistical
approach, namely, the linear model of coregionalisation (LMCR), which deals with data on two (or more) corre-
lated variables that together exhibit spatial correlation. The LMCR can be used to calculate a multivariate predic-
tion distribution at an unsampled location for SOC concentration and bulk density in all depth intervals
(for which observations weremade). A prediction of the SOC stock can subsequently be calculated from this dis-
tribution.We compare the ‘calculate-then-model’ and ‘model-then-calculate’ approaches using data on SOC con-
centrations and bulk densities from croplands across Queensland, Australia. Cross-validation results show that
the two approaches give similar prediction accuracies and reasonable uncertainty assessments. Therefore, the
more simple ‘calculate-then-model’ approachmight be favoured when both SOC concentration and bulk density
measurements are available at all data locations. However, when some locations have just SOC concentration
data — a commonly encountered situation due to difficulties in obtaining bulk density measurements under
field conditions — then the ‘model-then-calculate’ approach offers a useful alternative; we show that it still
gives good predictions and a fair assessment of uncertainty in this situation. We also show the importance of
the LMCR for modelling the correlation between SOC concentration and bulk density data for the different
depth intervals within a ‘model-then-calculate’ approach; if this correlation is not accounted for (i.e. modelling
of the SOC concentration and bulk density data for the different depth intervals is performed independently),
then very poor uncertainty assessments result.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spatial prediction of soil organic carbon (SOC) stock has become a
key issue over recent years, because of the potential impacts of carbon
on climate change and soil health (Bellamy et al., 2005; Lal, 2004;
Saby et al., 2008). This issue has received considerable attention, in
part because of the large variation displayed by SOC at all scales from
national to field, and also due to the expense of obtaining accuratemea-
surements of SOC. As a result, research into approaches to improve
spatial prediction of SOC stock is on-going (Minasny et al., 2013).

Many different techniques have been used to predict SOC stock at
locations where it has not been measured, and thereby create a map

(Grunwald, 2009). Typically, data from each of N sampled sites are
first used to calculate the SOC stock at these sites through:

cstock ¼ c ρ 1−rð Þ α; ð1Þ

where c is the SOC concentration, ρ the bulk density, and r the propor-
tion of rock fragments for the sample. (In this study of SOC in cropping
land, we will assume zero rock fragments.) The final term, α, is a factor
to get to the appropriate units for SOC stock (Mg ha−1) down to the
relevant reference soil depth (commonly 30 cm, following the IPCC
guidelines; IPCC, 1996), or preferably, to a fixed soil mass (Gifford and
Roderick, 2003; McBratney and Minasny, 2010). Subsequently, the
calculated stock at the N sites is either interpolated (perhaps through
a geostatistical approach, e.g. Cambule et al., 2014; Phachomphon
et al., 2010), or used to build some model to predict the SOC stock at
unsampled locations, for example, boosted regression trees (Martin
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et al., 2011). We refer to this general approach as a ‘calculate-then-
model’ approach.

An alternative to this is a ‘model-then-calculate’ approach. First, the
variables for which we have data are modelled and interpolated onto a
prediction grid. Typically, the dataset will include measurements of the
bulk density and SOC concentration for multiple depth intervals. Subse-
quently, the interpolated values of these variables are used to calculate
estimates of stock, whilst accounting for the uncertainty of the interpo-
lations. Since the relationship between SOC stock and its components
is non-linear, we would not expect the model-then-calculate and
calculate-then-model approaches to give the same results.

For the ‘model’ step of thismodel-then-calculate approach,we could
employ any of a number of methods (as referred to above); here we
consider geostatistical approaches. A first naïve approach might be to
apply univariate geostatistical methods (Webster and Oliver, 2001) to
the data for each of the variables independently. This approach, howev-
er, ignores any correlation between the SOC concentration and bulk
density and between the data for the different depth intervals. Panda
et al. (2008) and Goidts et al. (2009) have stressed the importance of
accounting for correlations between SOC stock constituents when
calculating SOC stock estimates. This ‘covariation’ can be modelled
using a multivariate geostatistical approach, namely, the linear model
of coregionalisation (LMCR), which is designed to deal with data on
two (or more) correlated variables that together exhibit spatial correla-
tion (Webster and Oliver, 2001). The LMCR can be used to calculate a
bivariate prediction distribution for SOC concentration and bulk density
at an unsampled location; if data from multiple depth intervals are
available, a multivariate prediction of the SOC concentration and bulk
density for all intervals can be calculated. A prediction of the SOC
stock calculated from this distribution will therefore explicitly account
for the spatial correlation for both constituents of the SOC stock, the cor-
relation between them, and the correlation between the data for the
different depth intervals. If the LMCR is able to represent the variability
of each of the SOC stock components, then a model-then-calculate ap-
proach could be useful, particularly when data on the components are
incomplete (e.g. some missing bulk density measurements). Allen
et al. (2010) described how a LMCR of SOC concentration and bulk den-
sity could be advantageous for designing sampling schemes. However,
we are unaware of any studies that have applied this approach to the
prediction of SOC stock.

In thiswork,we consider the calculate-then-model andmodel-then-
calculate frameworks for prediction of SOC stock using data on SOC con-
centrations and bulk densities from croplands across Queensland,
Australia. The data are measurements of SOC concentrations and bulk
densities from three sampled depth intervals; therefore, the model-
then-calculate approach consists of modelling the spatial distribution
of six variables. We use cross-validation to compare the methods
under different scenarios for the available data. First, we consider a
full dataset (i.e. all data locations consist of measurements of all
variables). Second, we investigate prediction performance when some
data locations do not have measurements of bulk density: this repre-
sents a commonly-encountered situation, due to conventional bulk
density sampling methods in the field being time-consuming and
labour-intensive (Allen et al., 2010; Don et al., 2007; Holmes et al.,
2011). We draw conclusions and provide some recommendations as
to the most appropriate methodology in each particular scenario.

2. Case study data

2.1. Study region, soil sampling and analysis

Our focus in this study is on the cropping lands of Queensland. The
grey area in Fig. 1 covers three of the five zones that constitute
Queensland's Strategic Cropping Land: the Western Cropping, Eastern
Darling Downs and Granite Belt zones (The State of Queensland,
2011). When we consider mapping SOC stock across Queensland's

cropping lands, we focus on this area. We note that this area does also
include other land uses (grazing lands and national parks in particular),
for which our predicted SOC stock is not appropriate. An alternative
would be to use a more refined outline of the cropping lands as our
mapping area. However, this would result in very fragmented maps
that were difficult to compare. Therefore, for the purposes of this
study, in which themain interest is the comparison of methods for spa-
tial prediction of SOC stock, the outline shown in Fig. 1 is sufficient.

The data we work with were reported in a previous study (Page
et al., 2013), and we provide only a brief description here. Soil samples
were collected from 179 sites across the cropping lands of Queensland.
We use data from 172 of these sites (Fig. 1), for which composite soil
sampleswere formed; the remainderwe discarded because no compos-
ite was made. Each site was marked out with a 25-m × 25-m grid with
5-m spacings (i.e. 36 locations), and 10 of these locations were selected
randomly for sampling. Soil cores were collected from each of these 10
locations down to 30-cm depth using a hydraulic push rig. The cores
were divided into 10-cm depth intervals, and then combined for each
interval to create composite samples for the 0–10-cm, 10–20-cm and
20–30-cm intervals. SOC concentrations were determined for the com-
posite samples using the dry combustion (LECO)method. An Additional
three soil cores were taken to 30 cm from random locations within the
25-m × 25-m area using a 42-mm internal diameter tube, and split into
the three depth intervals for bulk density measurements. All sites were
sampled during a fallowperiod.We refer to Page et al. (2013) for amore
detailed description of the analysis.

Fig. 2 shows histograms and scatterplots of the three bulk density
variables (denoted as ρ1, ρ2 and ρ3), and SOC-concentration variables
(denoted as c1, c2 and c3), for the three sampled depth intervals. The
plots show the negative correlation of bulk density with SOC concentra-
tion, and the positive correlation between data for the three sampled
depth intervals. This suggests that a statistical modelling approach
that makes use of the joint variability of these six variables, such as
the LMCR, could be advantageous. The histograms suggest some skew-
ness in the SOC concentration data.

2.2. Calculation of SOC stock from soil-profile bulk density and SOC
concentration

In this paper, our primary variable of interest is the SOC stock, calcu-
lated according to the fixed soil-mass system (Gifford and Roderick,
2003) to a nominal reference depth of 30 cm (IPCC, 1996). Given the
concentrations and bulk densities of the three depth intervals at any
particular location, we calculated the stock as follows. The approach
makes use of spline functions, which can be fitted to soil profile data
to represent the variation of bulk density and SOC concentration with
depth (Bishop et al., 1999). Since interest is in the SOC stock down to
a fixed soil mass (which corresponds to different depths at different
locations), such spline functions prove useful for calculating the stock
(Malone et al., 2009; Pringle et al., 2011). We note that for the ‘model-
then-calculate’ approach, the calculation was embedded within a
Monte Carlo routine to account for the uncertainty for the predicted
SOC concentration and bulk density in the three depth intervals, as
detailed in Section 3.1.

First, the soil mass (megagramper squaremetre of ground area) to a
depth of 30 cm was calculated for each sample by summing the soil
masses of the three depth intervals (the soil mass of each interval is
given by the bulk density, in Mg m−3, multiplied by the length of each
interval, in m). The minimum mass per unit area to 30 cm over all 172
samples was 0.30 Mg m−2, which we refer to as the reference mass,
mref. An equal-area spline (Bishop et al., 1999; Malone et al., 2009)
was then fitted (with smoothing parameter, λ = 0.01), to model the
variation of bulk density through each soil profile. For each profile,
with bulk density profile data ρi, the splinewas used to calculate cumu-
lative soil masses (per unit ground area) for small increments of the
depth (we use 1-cm increments), so that the depth in m, dref(ρi, mref),
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