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The objective of thework presented in this paperwas to investigate how rasters of the probabilities of occurrence
of soil classesmay be used to create digital soil propertymaps andmaps of their associated uncertainties. The ap-
proach we present is formalised in an algorithm we developed called “Digital Soil Property Mapping Using Soil
Class Probability Rasters” (PROPR).
The soil class probability rasterswere derived previously froma spatial disaggregation of the 1:250,000-scaleDal-
rymple Shire legacy soil polygon map from central Queensland, Australia.
We created digital soil property maps of soil pH 1:5 H2O and their uncertainties (as indicated by estimates of the
limits of the 90% prediction interval) at six depth increments down the soil profile (0–5 cm, 5–15 cm, 15–30 cm,
30–60 cm, 60–100 cm, 100–200 cm). The calculation of the weighted mean soil pH value for each depth incre-
ment at each grid cell was based on reference pH values for each soil class and used the probabilities of occur-
rence at each grid cell as weights.
The calculation of the prediction interval limits for each depth increment involved sampling from the triangular
distribution of the soil pH of each soil class using the soil class probabilities at each grid cell asweights in order to
identify the number of samples to draw from each distribution. The 90% prediction interval limits were then es-
timated as the 5th and 95th percentiles of the distribution of samples drawn from the soil classes' triangular
distributions.
Themaps of soil pH displayed strong spatial patterns. Soil pH generally increasedwith depth. Uncertainty gener-
ally increased with depth. Validation on 300 randomly-selected soil profiles returned a Lin's concordance corre-
lation coefficient of 0.193 at the surface increasing to 0.266 at depth. RMSE increased with depth from about
0.75 pH units at the surface to 1.15 at depth.
Soil class probability rasters are useful for generating digital soil property maps and maps of the associated
uncertainties. Validation left room for improvement but the quality of the results is probably strongly affected
by the quality of the spatial disaggregation that produced the soil class probability rasters. The PROPR approach
may be useful in situations where profile observations are limiting but where legacy soil maps are available.
Generation of the soil class probability rasters to use in PROPR is a predictive exercise in itself and so is also sub-
ject to uncertainty. The probability rasters likely can be derived by several methods including logistic regression
and data mining; the probability rasters we used were derived via spatial disaggregation of a legacy soil polygon
map.
PROPR may be useful in situations where profile observations are limiting but where legacy soil maps are avail-
able. The soil class probability rasters need to be produced separately. Information on the within-soil-class vari-
ability of the target soil property at each depth increment must be known in order to establish the triangular
distributions for the uncertainty estimation.
PROPRmay reduce reliance on having sufficient soil profile observations in areas where such data is limiting.We
used available profile observations to estimate thewithin-soil-class variability in order to establish triangular dis-
tributions for the soil classes in our study area, but the information required to do so could also be derived from
legacy reports or expert knowledge.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Digital soil property mapping has come a long way in the past few
decades. There are several core methods in the literature, and their
use has been reviewed comprehensively by others (McBratney et al.,

Geoderma 237–238 (2015) 190–198

⁎ Corresponding author.
E-mail addresses: nathan.odgers@sydney.edu.au (N.P. Odgers),

alex.mcbratney@sydney.edu.au (A.B. McBratney), budiman.minasny@sydney.edu.au
(B. Minasny).

http://dx.doi.org/10.1016/j.geoderma.2014.09.009
0016-7061/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Geoderma

j ourna l homepage: www.e lsev ie r .com/ locate /geoderma

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2014.09.009&domain=pdf
http://dx.doi.org/10.1016/j.geoderma.2014.09.009
mailto:nathan.odgers@sydney.edu.au
mailto:alex.mcbratney@sydney.edu.au
mailto:budiman.minasny@sydney.edu.au
http://dx.doi.org/10.1016/j.geoderma.2014.09.009
http://www.sciencedirect.com/science/journal/00167061
www.elsevier.com/locate/geoderma


2003; Scull et al., 2003). They commonly rely on having sufficient point
data. Wewill take a brief look at some of themore common techniques.
Of the geostatistical techniques, there are now several kinds of kriging,
including ordinary kriging (Burgess andWebster, 1980a), block kriging
(Burgess and Webster, 1980b), co-kriging (McBratney and Webster,
1983) and others. Statistical techniques usually involve linear regres-
sion (for exampleMoore et al., 1993) to establish relationships between
soil classes or soil properties and environmental covariates. Hybrid
techniques such as regression-kriging have been available since the
mid-1990s (Odeh et al., 1994, 1995). In this case the target soil property
is predicted using linear regression and summedwith the kriged regres-
sion residuals. This is akin to the formal statistical approach of linear
mixed model. Data mining techniques such as regression trees have
now been widely used to map soil properties (for example Henderson
et al., 2005; McKenzie and Ryan, 1999).

As we pointed out, these approaches all rely on having sufficient
point data. In the case of kriging, Webster and Oliver (1992) concluded
that 150 to 200 point observations are required to estimate the
variogram reliably in areas where the spatial variation is isotropic, and
potentially 300 to 400 observationswhere the spatial variation is aniso-
tropic (Voltz andWebster, 1990). Data mining or regression techniques
also rely on enough soil observations that cover the whole variation of
the covariates so that the spatial prediction function can be applied to
the area of interest.

For mapping large regions, to assemble a dataset of this size
via sampling anew is often impractical or even prohibitive for reasons
of cost or time. At the same time it may not be feasible to rely on
legacy observations for reasons of data availability (do we have
enough data?); data accessibility (can we get our hands on it?); or
because of questions over data provenance, which covers a host of is-
sues including thequality and completeness of the legacy data, position-
al accuracy, representivity, sampling scheme and so-on (Lagacherie,
2008).

Some digital soil class mapping techniques are able to produce spa-
tially exhaustive probability distributions of the soil classes in an area of
interest. One example is our DSMART algorithm (Odgers et al., 2014),
which spatially disaggregates legacy soil polygon maps to produce ras-
ter maps of the estimated probabilities of occurrence of the soil classes
defined in the legacy map. Other disaggregation techniques produce
similar output (for example Kempen et al., 2009) or could potentially
be adapted to do so (for example Bui and Moran, 2001; Häring et al.,
2012; Subburayalu et al., 2014).

Others have demonstrated how the probability rasters can be
used in a weighted-mean setting to generate maps of soil properties
(Kempen et al., 2010, 2011). Still others have demonstrated similar
approaches using soil class similarity rasters (Zhu and Band, 1994;
Zhu et al., 1997). The theme of this approach is not new and has com-
monly been applied at the map unit level using areal proportions of
the soil classes as weights (for example Davidson and Lefebvre,
1993; Galbraith et al., 2003; Homann et al., 1998; Odgers et al.,
2012); the disadvantage in doing so at the map unit level is that
the weighted mean property value is invariant within the respective
map unit polygon. On the other hand, using a raster data model
where the soil class probabilities vary from grid cell to grid cell al-
lows the predicted soil property value to vary cellwise also, which
more closely approximates the reality of soil variation across the
land surface.

It is also desirable to have an estimate of the uncertainty associated
with the weighted mean prediction at each grid cell. Zhu et al. (1997)
did not do so, and the approach of Kempen et al. (2010) heavily relied
on having sufficient point observations. Therefore given a set of soil
class probability rasters and some reference soil property data, we can
easily make predictions of the target soil property that vary from grid
cell to grid cell, and in this paper we suggest a method of estimating
the uncertainty associated with these predictions that does not rely on
having abundant point observations.

2. Aim

In this paper we introduce an algorithmwe developed called PROPR
(for “digital soil property mapping using soil class probability rasters”).
The aim of this paper is to demonstrate how soil class probability rasters
can be used to generate predictions of soil properties and their associat-
ed uncertainties.

3. Methods

3.1. Study area

The study area comprisesmost of the former Dalrymple Shire in cen-
tral Queensland, Australia (Fig. 1). It has an area of about 68,000 km2

and is approximately 1000 km north of Brisbane. It comprises a large
part of the northern Burdekin River catchment. The study area is bound-
ed on the east by the Seaview and Leichhardt Ranges, theGreat Dividing
Range in thewest, and the Suttor and Belyando Rivers in the south-east.
Most of the area is flat to gently undulating and elevation generally de-
creases towards the south-east. It is drained by the Burdekin River and
its tributaries (Rogers et al., 1999).

3.2. Disaggregated soil map

In an earlier work (Odgers et al., 2014) we spatially disaggregated a
soil polygon map from the Dalrymple Shire which yielded maps of the
estimates of probability of occurrence of the 71 soil classes in the origi-
nal soil polygonmap. The probabilities of occurrenceweremapped onto
a 30-m resolution raster grid covering the study area (some examples

Fig. 1. Overview of the study area in central Queensland, Australia.
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