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This study aims to map the measurable fractions of soil organic carbon related to the RothC carbon model at the
catchment scale and to assess the model and prediction quality. It also discusses how the outputs can be used to
provide initial pool estimates for processmodelling of soil carbon in a spatial context. The studywas carried out in
Cox's Creek catchment in northern New SouthWales, Australia. Samples were collected in 2010 using a design-
based sampling scheme. The measurable fractions of the RothC soil carbon model considered in this study were
resistant organic carbon, humus organic carbon and particulate organic carbon. It has been reported that these
measurable fractions of soil organic carbon can successfully substitute for the conceptual pools of carbon in the
RothC soil carbon model. All the samples were scanned to create MIR spectra and recently developed spectro-
scopic models by Commonwealth Scientific and Industrial Research Organisation (CSIRO) under the national
soil carbon research programme (2009–2012) were used to carry out the prediction of respective fractions.
We used linear mixed models to create a model for mapping the measurable fractions of soil organic carbon
across the catchment. The cross validation results revealed that the highest Lin's concordance correlation be-
tween measured and predicted values was recorded for resistant organic carbon (0.78), followed by humus or-
ganic carbon (0.74) and particulate organic carbon (0.58). Finally, to assess the uncertainty of the predictions
we carried out conditional sequential Gaussian simulations. We demonstrated that measurable fractions of car-
bon related to the RothC model can be mapped at catchment scale with reasonable accuracy. The derived maps
could be used in future studies to initialize the RothC model at any location across the landscape with quantified
uncertainties.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An interest in the content, composition and stocks of soil organic car-
bon (SOC) has developed resulting from the concomitant positive im-
pacts that SOC can have on soil productivity and sustainability and the
potential to reduce the net emission of greenhouse gases by sequester-
ing atmospheric carbon in soil (Guo andGifford, 2002; Lal, 2004a,b; Post
and Kwon, 2000). Global estimates of SOC stock to a depth of 1 m
amount to 1550 Pg C (1 Pg = 1015 g) which represents three times as
much carbon as found in the biosphere and twice as much carbon as
found in the atmosphere (IPCC, 2000). In Australia, concentrations of
SOC have been reduced by 20% to 70% due to the implementation of ag-
ricultural production systems (Luo et al., 2010). Lal (2004a) proposed
that 50% to 66% of the carbon sequestration potential within soil could
be attained. If the amount of carbon globally stored in soil change by
1% of what is currently present, an 8 ppm shift in atmospheric carbon
concentration would occur, provided other components of the global
carbon cycle remain constant (Baldock et al., 2012). These values dem-
onstrate that small positive or negative changes in global SOC stockswill
have a significant impact on atmospheric carbon concentration. Gaining

an understanding and being able to both map and model the implica-
tions of land management on SOC stocks are of high importance.

Digital soil mapping methods (DSM) have become more focused on
mapping SOC stocks as well as contents. McBratney et al. (2003)
formalised the concept of DSM in what is now commonly referred to
as the scorpan model:

S ¼ f s; c; o; r;p; a;nð Þ þ e ð1Þ

where S is a soil property such as the stock or concentration of SOC or its
component fractions, and f is a predictionmethod or function which in-
corporates covariates related to soil (s), climate (c),organisms (o), relief
(r), parent material (p), time (a), and space(n) and e is (in some cases)
the spatially correlated errors. The SOC (stock or concentration) has
been mapped using this approach at the paddock, regional, continental
and global scales. Some examples include work by Brodský et al. (2013)
and Miklos et al. (2010) at paddock scale; Meersmans et al. (2008) and
Minasny et al. (2006) at regional scale and Henderson et al. (2005) and
Odgers et al. (2012) at the continental scale.

Even though much attention has been given to mapping total SOC,
little research has been completed onmapping compositionally distinct
fractions of SOC. One such example is given by Vasques et al. (2010)
where they mapped the total carbon and four soil carbon fractions,
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namely recalcitrant carbon, hydrolyzable carbon, hot-water-soluble
carbon, andmineralizable carbon, at depths of 0 to 0.3 macross awater-
shed in north-central Florida, United States. Mapping SOC fractions is as
important as mapping total SOC due to the fact that quantitative esti-
mates of the contents of carbon fractions are required as inputs for
mechanistic or processmodels of SOC, to provide important information
for land management, for policy decisions and finally to understand the
relative contribution of different SOC pools to total carbon across land-
scapes (Vasques et al., 2010).

In this paper we focus on mapping the spatial distribution of three
measurable fractions of SOC that Skjemstad et al. (2004) showed
could be simulated by the RothC soil carbon model. The RothC soil car-
bon model is a process oriented multi-component model (Batlle-
Aguilar et al., 2011) developed to simulate the dynamics of SOC in the
topsoil (0–0.30 m) layer of non-waterlogged environments (Coleman
and Jenkinson, 1999). In the RothC model, SOC is split into five concep-
tual pools of carbon: four active pools and one inert pool called inert or-
ganic matter (IOM). The IOM pool is considered to be resistant to
decomposition. The active pools include decomposable plant material
(DPM), resistant plant material (RPM), microbial biomass (BIO), and
humified organic matter (HUM) (Coleman and Jenkinson, 1999). The
RothC model is widely used all over the world. In Australia, the RothC
model forms the basis for the FullCAM carbon cycling model used by
the Australia national carbon accounting system to estimate the impact
of variations in soil carbon on Australian national carbon accounts
(Richards, 2001).

Instead of using conceptual pools there have been attempts to sub-
stitute these pools with measurable fractions of SOC (Skjemstad et al.,
2004; Zimmermann et al., 2007b). Typically the fractions are isolated
using physical or chemical methods or a combination of both methods.
Due to cost and time consuming nature of determining the content of
measurable fractions of SOC, studies have investigated the ability of
mid-infrared spectroscopy (MIR) when combined with partial least
squares regression (PLSR) to develop predictive algorithms (Baldock
et al., 2013a; Janik et al., 2007; Zimmermann et al., 2007a). In
Australian soil context, Janik et al. (2007) developed MIR/PLSR models
capable of predicting the allocation of SOC to the measureable fractions
which Skjemstad et al. (2004) used with RothC model. This approach
was modified by Baldock et al. (2013a) and Baldock et al. (2013b)
under the Australian national Soil Carbon Research Program (SCaRP).
Developing MIR/PLSR models for predicting measureable fractions of
SOC offers a rapid and cost effective methodology that can be deployed
across many samples using acquired MIR spectra provided adequate
calibration algorithms exist for the samples being analysed.

Therefore, the aims of this research were to (a) map measurable
fractions of the RothC model using the scorpan approach; (b) assess
the quality of the developed models and maps; (c) discuss the uncer-
tainties associated with using spectroscopic estimates of fractions as in-
puts to the mapping process and (d) discuss the possible use of DSM
outputs in combination with SOC simulations using the RothC model
in a spatial context.

2. Methods

2.1. Study area

The study area was the Cox's Creek catchment situated in northern
New South Wales (NSW), Australia (Fig. 1). The spatial extent of the
catchment is 1358 km2. The catchment had a mixture of land uses in-
cluding irrigated agriculture (4%), dry land cropping (35%), improved
pasture (38%), forest (20%) and other (3%). The elevation of the catch-
ment ranged between 240 m and 635 m above sea level. Soils within
the catchment were variable, ranging from heavy textured cracking
clays (Vertosols) found along Cox's Creek and its tributaries to sandy
soils (Tenosols) located towards the western boundary of the
catchment.

2.2. Soil data

2.2.1. Sampling
Soil sampleswere collected in November 2010 using a stratified ran-

dom sampling design applied across the catchment. The soil–land use
(SLU) complexes created using combinations of both generalised land
use/land cover (LULC) and soil type classeswere used as strata to deter-
mine soil sampling locations. The LULC data were obtained from the
Bureau of Rural Sciences (http://adl.brs.gov.au/landuse/) which were
available at 1:250,000 scale. The LULC data were generalised in to five
LULC classes as Forests, Dry land agriculture, Improved pasture, Irrigat-
ed agriculture and other in GIS environment. In case of soil class infor-
mation, soil class map produced by Nelson and Odeh (2009) was
used. The soil class map for the study area was produced at 200 m res-
olution and converted to vector format prior to generalisation in GIS.
Two soil type classes were defined (namely Vertosols and All other
soils) due to the abundance of Vertosols (55% of the total extent of
land) and the limited budget for soil sampling which prevented having
a large number of soil categories. The “All other soils”weremainly dom-
inated by Tenosols (21%), Sodosols (9%) and Chromosols (7%). More de-
tails of the soil of the study area are given in Nelson and Odeh (2009).
Finally, five SLU complexes were created including (i) Forest, (ii) Dry
land agriculture, (iii) Improved pasture –Vertosols, (iv) Improved pas-
ture –All other soils and (v) Irrigated agriculture using both generalised
LULC and soil maps. In creating the SLU complexes, the forest LULC was
considered irrespective of soil as it had only a small amount of Vertosols
present. Irrigated agriculture was also considered alone as it
encompassed only 4% of the total extent of the study area.

Using SLU complexes as the strata, soil sample collection sites were
defined by applying a stratified random sampling approach. A total of
forty four sampling sites were identified with the number of sites allo-
cated to each strata being proportional to the area of the strata. At
each site, two soil cores were taken approximately 30 m apart. Collec-
tion of paired samples at each site was performed to enable modelling
of the short-range spatial variation. The second core at each site was
taken in a random direction from the first core. Soil samples were col-
lected based on depth intervals of 0–0.1, 0.1–0.3 and 0.3–0.5 m.

2.2.2. Laboratory analysis
A subsample (approximately 10 g) was taken from each sample and

finely ground using a RetschMM400mixer mill set to an oscillation fre-
quency of 28 Hz for 3 min (Baldock et al., 2013a). Then MIR reflectance
spectra (400–8000 cm−1 at a resolution of 8 cm−1) were collected
using the Thermo Nicolet 6700 FTIR spectrometer (Thermo Fisher Sci-
entific Inc., MA, USA) equipped with a Pike AutoDiff automated diffuse
reflectance accessory (Pike Technologies, WI, USA). Background signal
intensity was first quantified by collecting 240 scans on silicon carbide
disc prior to analysing each batch of sixty soil samples using the auto
sampler. The background signal was used to correct the signal obtained
from each sample. Powdered soil samples (100 mg) were placed in
stainless steel auto sampler cups and the surface was levelled. A total
of 60 scanswere accumulated for each sample and averaged to produce
a spectrum for each sample.

2.3. Measurement of total SOC

Prior to analysis for total SOC contents, all ground sampleswere test-
ed for the presence of inorganic carbon. A 0.5 g sub-sample of finely
ground soil wasplaced on a ceramic plate and a fewdrops of 1 Mhydro-
gen chloride (HCl) were placed directly on to the sample. Any sample
that recorded a fizz was considered to contain carbonates. Removal of
carbonates was carried out according to the guidelines given by
Baldock et al. (2009). The gravimetric carbon content of all samples
(untreated and acid treated) was determined using either a LECO
CNS2000 or LECO C144 carbon analyser. All carbon contents (g/kg)
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