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Local and regional soil data can be improved by coupling new digital soil mapping techniques with high
resolution remote sensing products to quantify both spatial and absolute variation of soil properties. The
objective of this research was to advance data-driven digital soil mapping techniques for the prediction of soil
physical properties at high spatial resolution using auxiliary data in a semiarid ecosystem in southeastern
Arizona, USA. An iterative principal component analysis (iPCA) data reduction routine of reflectance and
elevation covariate layers was combined with a conditioned Latin Hypercube field sample design to effectively
capture the variability of soil properties across the 6250 ha study area. We sampled 52 field sites by genetic
horizon to a 30 cm depth and determined particle size distribution, percent coarse fragments, Munsell color,
and loss on ignition. Comparison of prediction models of surface soil horizons using ordinary kriging and
regression kriging indicated that ordinary kriging had greater predictive power; however, regression kriging
using principal components of covariate datamore effectively captured the spatial patterns of soil property–land-
scape relationships. Percent silt and soil redness rating had the smallest normalized mean square error and the
largest correlation between observed and predicted values, whereas soil coarse fragmentswere themost difficult
to predict. This research demonstrates the efficacy of coupling data reduction, sample design, and geostatistical
techniques for effective spatial prediction of soil physical properties in a semiarid ecosystem. The approach ap-
plied here is flexible and data-driven, allows incorporation of wide variety of numerically continuous covariates,
and provides accurate quantitative prediction of individual soil properties for improved land management deci-
sions and ecosystem and hydrologic models.

Published by Elsevier B.V.

1. Introduction

Information on the spatial variability of soil properties is required for
input to soil erosion models (Chen et al., 2011), hydrology models
(Miller and White, 1998; Peschel et al., 2006), site-specific agricultural
management (Duffera et al., 2007), and digital soil risk assessments
that impact socioeconomic and environmental policy (Carre et al.,
2007). Coarse scale soil information masks spatial variability of soil
properties important for such landscape modeling at local and regional
scales (Lathrop et al., 1995; Singh et al., 2011). Themajority of available
soils information derives from soil survey efforts that commonly
provide little information regarding spatial variability within a soil
map unit or accuracy assessments of reported soil properties. This lack
of information can present problems for scaling and effectively incorpo-
rating soil data into landscape scale models (Wang andMelesse, 2006).

Here we develop a robust, data-driven approach for predicting soil
physical properties in a continuous raster data format. Specifically, we
couple iterative data reduction of covariate layers with model-based
sampling design and regression kriging to quantify soil physical
properties in a complex semiarid ecosystem.

One of the most important factors for predicting soil properties
across the landscape is the distribution of sampling locations. Tradition-
al statistical approaches do not consider spatial correlation of variables
or the relative position of sampling locations (Di et al., 1989). These
methods can be considered design-based models because they intro-
duce a stochastic element with the determination of sample locations,
whereas model-based designs attempt to describe the reality of soil
properties that are present as a result of the stochastic soil forming
components for a given area (Brus and deGruijter, 1997). While both
design- and model-based approaches can be used for predicting soil
properties (Brus and deGruijter, 1997), recent efforts have focused on
model-based sampling designs for implementing landscape-scale soil
prediction models (Minasny and McBratney, 2006). Although many
digital soil mapping studies utilize existing soil datasets for developing
soil prediction models (Hengl et al., 2007b; Maselli et al., 2008; Ziadat,
2005), estimating soils in an area without existing soil data requires
the selection of a sampling design.

Geoderma 219–220 (2014) 46–57

Abbreviations: cLHS, Conditioned Latin Hypercube sampling design; iPCA, Iterative
principal component analysis; NED, National elevation dataset; RK, Regression kriging.
⁎ Corresponding author. Tel.: +1 575 646 3557.

E-mail address: mrlevi21@email.arizona.edu (M.R. Levi).
1 Present address: USDA-ARS Jornada Experimental Range, MSC 3JER, Box 30003, New

Mexico State University, Las Cruces, NM 88003, USA.

0016-7061/$ – see front matter. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.geoderma.2013.12.013

Contents lists available at ScienceDirect

Geoderma

j ourna l homepage: www.e lsev ie r .com/ locate /geoderma

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2013.12.013&domain=pdf
http://dx.doi.org/10.1016/j.geoderma.2013.12.013
mailto:mrlevi21@email.arizona.edu
http://dx.doi.org/10.1016/j.geoderma.2013.12.013
http://www.sciencedirect.com/science/journal/00167061


Developing a sampling design provides the opportunity to address
particular questions of interest and allows the incorporation of special
considerations that canmaximize the potential for accurately predicting
soil properties. In addition to the selection of sample locations in
geographic space (i.e., X and Y coordinates), a considerable amount
of attention has been focused on spreading sampling locations in the
feature space of available auxiliary data (Brungard and Boettinger,
2010; Hengl et al., 2003; Minasny and McBratney, 2006). An optimal
sampling design for an area where functional relationships between
soil properties and auxiliary information are not known should aim
to simultaneously represent geographical space and feature space of
available data (Hengl et al., 2003). One method of achieving this is
with a conditioned Latin Hypercube sampling design (cLHS) to create
sample locations that represent the variability of available covariate
data (Minasny and McBratney, 2006). Stratification of sample locations
in both feature space and geographic space can optimize deterministic
and stochastic prediction models by providing the necessary sampling
structure for each technique (Hengl et al., 2003;McBratney et al., 2000).

Interpolation methods such as ordinary kriging provide coarse
estimates of soil variability with limited gain in information relative to
vector based soil maps. Ordinary kriging is one of the most common
geostatistical approaches used in digital soil mapping and is often
used for comparison purposes against other spatial modeling methods
(Bishop and McBratney, 2001; Li and Heap, 2011; Scull et al., 2005).
Auxiliary information is often available for a given area and presents
the opportunity of using hybrid prediction models that combine non-
spatial prediction methods like regression with spatial methods such
as kriging (Hengl et al., 2004, 2007a; McBratney et al., 2000). The term
regression kriging was first coined by Odeh et al. (1994) and refers to
using regression to extract information from sampled locations using
covariate layers and then modeling the residuals with ordinary kriging.
Kriging of residuals canminimize problems associatedwith uncertainty
in the secondary information (Bishop et al., 2006).

There are multiple approaches to digital soil mapping that use a
wide variety of covariate data. For example, surface reflectance data
such as Landsat (Eldeiry and Garcia, 2010; Neild et al., 2007), SPOT
(Carre and Girard, 2002), IKONOS (Eldeiry and Garcia, 2008), and
MODIS (Hengl et al., 2007a) have all been used for soil prediction
models. Digital elevation models are also common data sources for
soil prediction and come in a variety of spatial resolutions (Hengl
et al., 2007b; McKenzie and Ryan, 1999; Ziadat, 2005). If global soil
mapping efforts are to be successful for projects like the GlobalSoilMap
project (Sanchez et al., 2009), a method of identifying important
auxiliary variables from the numerous available data sets is needed to
determine the best data for input to soil prediction models. Tesfa et al.
(2009) used correlation filtering in association with an importance
measure from random forests to determine explanatory variables
important for modeling soil depth. Another example is the optimum
index factor, which is based on the variance and correlation of different
reflectance band ratios (Chavez et al., 1982). In some cases, selection is
based on expert knowledge and the availability of data for a given area.
Though numerous methods have been employed to select important
layers of information from the plethora of available data, band selection
methods often produce different results (Beaudemin and Fung, 2001). A
standard approach to selecting input data to soil prediction models has
yet to be developed. Here we used an iterative principal component
analysis (PCA) data reduction process similar to Hengl et al. (2007b)
as a data-driven approach to determine important covariate layers.

The objectives of this study were to develop a data-driven soil
prediction model for estimating physical soil properties of surface
horizons in a semiarid ecosystem using a combination of surface reflec-
tance and digital elevationmodel (DEM) covariates.We integrated iPCA
for selecting covariate layers, a conditioned Latin Hypercube to design
the sampling plan, and a hybrid geostatistical approach for soil property
prediction. With this approach in mind, our hypotheses were 1) that
covariate layers selected with the iterative data reduction technique

would have a strong correlation with physical soil properties, 2) the
cLHS design would produce a statistically robust sampling scheme
to capture the spatial variability of soils in the study area, and 3) inte-
grating covariate layers with spatial statistics using regression kriging
would improve the prediction of soil properties on the landscape
relative to either regression or ordinary kriging alone.

2. Materials and methods

2.1. Study area

The study area represents a sub-region of a recently mapped soil
survey area (Graham County, AZ, Southwestern Part) of approximately
160,000 ha located 30 km north of the town of Wilcox in southeastern
Arizona (Fig. 1). This soil survey represents a Soil Survey Geographic
(SSURGO) data product that was mapped as a third order soil map
with a mapping scale ranging from 1:20,000 to 1:63,360. The larger
survey area includes a wide elevation gradient ranging from 910
to 1970 m asl with adjacent mountain ranges to the east and west
that have maximum elevations of 3267 and 2336 m, respectively, that
strongly influence local soil–landscape relationships. The current
study was focused on a smaller area of interest of approximately
6265 ha with an elevation gradient of 1273 to 1655 m asl (Fig. 1). This
area was selected because it represents the variability of landscape
positions, geology, surface reflectance, and soils found in the surround-
ing areas. Soils in the study area were mapped as Argiustolls in the
western third, Paleargids and Haplocambids in the eastern third,
Haplogypsids and Gypsitorrerts in the central third, and Torrifluvents,
Torriorthents, and riverwash in the drainageswith areas of rock outcrop
distributed throughout portions of the upland landscape positions (Soil
Survey Staff, 2011).

Sedimentary basin fill deposits, including dissected and inset alluvial
fans and fan terraces, cover the study area and range in age from
Holocene to early Miocene-aged (20 Ma) materials (Richard et al.,
2000; Wilson and Moore, 1958). Areas to the east consist of large,
gently sloping alluvial fans formed from material eroded from Middle
Proterozoic granitic rocks (1400–1450 Ma) and Early Proterozoic
rocks (1600–1800 Ma) that include granite schist, gneiss, sandstone,
andesite, and rhyolite, whereas basin fill deposits in thewestern portion
of the study area consist of material eroded from Middle Miocene
to Oligocene age volcanic rocks (20–30 Ma) that include andesite,
rhyolite, and basalt, and are expressed on the landscape as a large
alluvial fan composed predominantly of rhyolitic materials and an
area of hills formed on residual basalt. Pliocene to Middle Pleistocene
age lacustrine deposits that contain abundant carbonate and gypsum
deposits occupy the center of the survey area (Fig. 1) (Melton, 1965).
The major drainage network drains to the N–NW and stream channels
are actively cutting back into the lacustrine sediments.

The wide variation in elevation, landform, and soils supports
a diverse range of vegetation types across the study area. This area
occupies the transition zone between Sonoran and ChihuahuanDeserts,
which differ in their annual precipitation regimes and dominant
vegetation communities (Brown, 1994; Neilson, 1987). Semi-desert
grassland makes up the majority of the study area (Brown and Lowe,
1994) and includes a variety of grasses, forbs, shrubs, leaf succulents,
and cacti (Brown, 1994).

The climate is semiarid with mean annual precipitation that ranges
from 403 to 472 mm and has a bi-modal distribution with maximum
rainfall during the summer monsoon and winter months (PRISM
Climate Group, 2008). Mean annual air temperature ranges from 16 to
17 °C with average minimum temperature ranges from 9 to 10 °C and
the average maximum temperature ranges from 23 to 25 °C. The soil
temperature regime is thermic (15–22 °C), and soil moisture regimes
include aridic and ustic, with the transition between the two occurring
in the foothills of the neighboring mountain ranges (Soil Survey Staff,
2011, 2012).
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