FISEVIER

Contents lists available at SciVerse ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

Controls on ¹³C and ¹⁴C variability in soil CO₂

M. Gillon a,b,c,*, F. Barbecot a, E. Gibert a, C. Plain d,e, J.-A. Corcho-Alvarado a,f, M. Massault a

- ^a IDES Laboratory, UMR CNRS-UPS 8148, Université Paris Sud-11, 91405 Orsay cedex, France
- ^b UAPV, UMR1114 EMMAH, F-84000 Avignon, France
- ^c INRA, UMR1114 EMMAH, F-84914 Avignon, France
- d UMR UL-INRA 1137 Ecologie Ecophysiologie Forestières Université Henri Poincaré BP 70239, 54506 Vandoeuvre les Nancy Cedex, France
- ^e UMR UL-INRA 1137 Ecologie Ecophysiologie Forestières INRA, route d'Amance 54520 Champenoux, France
- f Institute of Radiation Physics (IRA), University Hospital and University of Lausanne, Rue du Grand-Pré 1, 1007 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 14 February 2011 Received in revised form 5 June 2012 Accepted 11 June 2012 Available online 18 August 2012

Keywords: Organic matter CO₂ ¹³C ¹⁴C

Root respiration

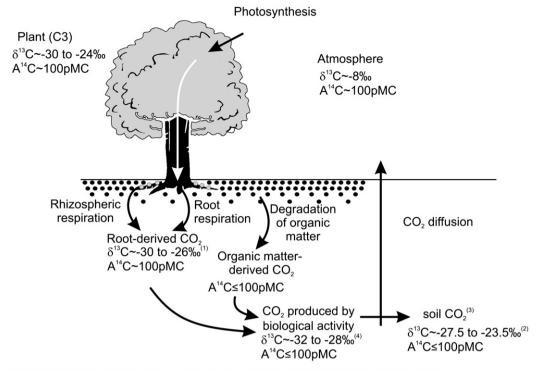
ABSTRACT

 14 C dating of groundwater depends on the isotopic composition of both the solid carbonate and the soil CO₂ and requires the use of 14 C age correction models. To better assess the variability of the 14 C activity of soil CO₂ (A 14 C_{soil-CO2}) and the δ 13 C of soil CO₂ (δ 13 C_{soil-CO2}), which are two parameters used in 14 C age correction models, we studied the different processes involving carbon isotopes in the soil. The approach used experimental data from two sites in France (Fontainebleau sands and Astian sands) and a steady-state transport model. In most cases, the 14 C activity (A 14 C) of atmospheric CO₂ is directly used in the 14 C age correction models as the A 14 C_{soil-CO2}. However, we demonstrate that since 1950, the evolution of the A 14 C_{soil-CO2} reflects the competition between the fluxes of root-derived CO₂ and organic matter-derived CO₂. Therefore, the A 14 C_{soil-CO2} must be used to date groundwater that is younger than 60 years old. Moreover, the δ 13 C of soil CO₂ (δ 13 C_{soil-CO2}) showed large seasonal variations that must be taken into account in selecting the δ 13 C age correction models. © 2012 Elsevier B.V. All rights reserved.

1. Introduction

Carbon-14 (14C) is a tracer that is commonly used to date groundwater. The carbon isotopic composition (13 C, 14 C) of the soil CO₂ is a key parameter in most of the correction models described in the literature for the ¹⁴C age of groundwater. This information is used to determine the so-called initial ¹⁴C activity (A¹⁴C), i.e., the A¹⁴C of the total dissolved inorganic carbon (TDIC) acquired during groundwater recharge and before radioactive decay (Eichinger, 1983; Evans et al., 1979: Fontes and Garnier, 1979: Ingerson and Pearson, 1964: Mook. 1976; Salem et al., 1980; Tamers, 1967). The isotopic signature of the TDIC is acquired mainly during water infiltration through the unsaturated zone by dissolution of both soil CO2 and matrix carbonates (Gillon et al., 2009). Moreover, interactions between dissolved inorganic carbon and carbonate rocks in the unsaturated zone affect the isotopic signature of the TDIC (Barbecot et al., 2000; Fontes, 1992). All these processes impact the initial A¹⁴C of groundwater and therefore must be considered for age calculations using theoretical models.

In most 14 C age correction models, the initial values for the 13 C content (8^{13} C) and A^{14} C that are acquired during groundwater recharge are either generated from the analyses of samples collected at the site under investigation or are estimated based on the vegetation cover


(Fontes, 1992; Fontes and Garnier, 1979; Kroitoru et al., 1989). However, the ^{14}C activity of atmospheric CO $_2$ has varied significantly over time and has led to significant changes in the ^{14}C activity of soil CO $_2$ (A $^{14}\text{C}_{\text{soil-CO2}}$), especially during and after the nuclear weapon tests of the 1950s and 1960s (Hua and Barbetti, 2004; Kromer, 2009; Trumbore, 2009). Subsequently, a "modern" (over the past 50 years) soil CO $_2$ sample is normally not representative of the recharge conditions that prevailed before 1950. The bias in selecting the initial $\delta^{13}\text{C}$ and A ^{14}C in the TDIC may be reduced if sound knowledge of the carbon sources in the soil, including the A ^{14}C distribution through time in each source, exists.

Soil CO_2 is mainly produced by (i) degradation of organic matter and (ii) root respiration (Kuzyakov, 2006). The degradation of soil organic matter is caused by heterotrophic microbial activity, *i.e.*, oxidation of organic matter from leaves and plant debris (Kuzyakov, 2006; Fig. 1). The second process is caused by (i) autotrophic living root respiration and (ii) heterotrophic rhizospheric respiration, *i.e.*, root residue mineralisation.

The isotopic composition of the CO $_2$ produced in the soil by the "living plant–microbial activity" complex is tightly linked to the isotopic composition of the living vegetation. Due to carbon isotopic fractionation during photosynthesis, C3-plants are depleted in ^{13}C by $20\pm1\%$ compared to atmospheric CO $_2$. Moreover, isotopic fractionation also occurs during carbon transfer from the leaves to other parts of the plant (Bowling et al., 2008; Clark and Fritz, 1997). However, A ^{14}C values are referenced to an international standard known as the modern radiocarbon standard (e.g., NIST Oxalic Acid I or NIST Oxalic Acid II), which was calibrated to wood grown in 1890 (absolute radiocarbon standard),

^{*} Corresponding author at: Université d'Avignon et des Pays de Vaucluse, UMR 1114 EMMAH, 33 rue Louis Pasteur 84000 Avignon, France. Tel.: +33 4 90 14 44 67; fax: +33 4 90 14 44 89.

E-mail address: marina.gillon@univ-avignon.fr (M. Gillon).

- (1) from literature (Lichtfouse et al., 1995; Lin et al., 1999; Krull et al., 2002; Badeck et al., 2005; Chemidlin Prévost-Bouré et al., 2009; Marron et al., 2009),
- (2) from soil CO₂ data in Fontainebleau sands site,
- (3) The diffusion of CO₂ from soil to atmosphere leads to a ¹³C enrichment of +4.4% between soil CO₂ and the CO₂ produced by biological activity (Cerling et al., 1991; Davidson, 1995)
- (4) from soil CO₂ data and the enrichment factor associated to diffusion

Fig. 1. Schematic illustration of CO_2 sources in soil and related $A^{14}C$. The example is for a C3-plant considering steady-state fluxes from before 1950, i.e., an $A^{14}C$ of atmospheric CO_2 equal to 100 pMC (percentage of modern carbon).

and are all corrected for isotopic fractionation to a normalised δ^{13} C value of -25% (Eq. (1); Clark and Fritz, 1997; Saliège and Fontes, 1984).

$$A^{14}C_{normalised} = A^{14}C_{no-normalised} \times \frac{(1+0.001\times(-25))^{2.3}}{\left(1+0.001\times\delta^{13}C_{no-normalised}\right)^{2.3}} \quad (1)$$

The normalisation to $\delta^{13}\text{C}$ of -25% removes the effects of mass-dependent isotopic fractionation; in other words, the A¹⁴C values are independent of ¹³C fractionation. The A¹⁴C of CO₂ produced by root respiration is thus assumed to be equal to that of atmospheric CO₂.

The A¹⁴C of CO₂ produced by degradation of soil organic matter is more difficult to determine and is therefore less well documented. Indeed, soil organic matter includes a wide range of organic compounds, from fresh to refractory components, with different degradation rates (Trumbore, 1993). The oxidation of old organic fractions produces ¹⁴C depleted CO₂ and consequently induces an ageing of the TDIC. The magnitude of this source of "old" CO₂ must be quantified to determine its contribution to the A¹⁴C of soil CO₂.

The temporal fluctuations of the $A^{\bar{1}4}C$ in atmospheric CO_2 , as well as the competition between root respiration and degradation of different pools of organic matter, have significant impacts on the $A^{14}C_{soil-CO2}$. Because this soil CO_2 is isotopically different from atmospheric CO_2 , the $A^{14}C$ of TDIC in groundwater cannot be merely considered to be similar to the $A^{14}C$ of atmospheric CO_2 .

Here, we study the variations of $\delta^{13}C$ and $A^{14}C$ in soil CO_2 with regard to different biological and physical processes. This information is then used to investigate the variability of $\delta^{13}C$ – $A^{14}C$ of CO_2 in soils and its impact on the radiocarbon dating of groundwater. The impacts of the water–rock carbonate interactions on the $\delta^{13}C$ and $A^{14}C$ of soil CO_2 have

been detailed in a previous study (Gillon et al., 2009). Hence, we focus the present study on 13 C– 14 C variations in soil CO₂ associated with biological processes in the first metre of the soil. Therefore, the water–rock carbonate interactions have only minor influences at this scale and have not intentionally been taken into account here.

The first part of this paper presents and discusses a large set of experimental data (e.g., carbon isotopic compositions of soil CO_2 and organic matter) obtained from two different sites in France: the Fontainebleau sands (Paris basin, $48^{\circ}43'$ 13.34''N; $2^{\circ}03'$ 28.3''E) and the Astian sands (Mediterranean coast, $43^{\circ}24'$ 13.84''N; $3^{\circ}11'$ 50.36''E). A modelling approach is then used to interpret the experimental data sets to better assess the $A^{14}C_{\text{Soil-CO2}}$ distribution through time. Finally, the temporal variations of the $A^{14}C$ in soil CO_2 are modelled by assuming an exponential distribution and several pools of organic matter with different residence times under steady-state conditions.

2. Materials and methods

2.1. Description of the investigated sites

The Fontainebleau site is located in the Paris Basin, France (Fig. 2). It is composed of fine, homogeneous and carbonate-free Oligocene sands that primarily contain silicates (up to 99% silica; Afchain et al., 1975). In the unsaturated zone, the sandy facies are overlaid by a sandy-clayey layer containing millstones (carbonate-free siliceous limestone with complete silicification; Fig. 2). The study site is within an outcrop of sand that is covered by grassland or forest (oak, beech, and chestnut trees) belonging to the C3-plant group (Deines, 1980).

The Astian site is located on the Mediterranean coast of France (Fig. 2). It is composed of fine and homogeneous sands that are composed mainly of quartz, between 0 and 30% calcite, micas, potassic

Download English Version:

https://daneshyari.com/en/article/4573617

Download Persian Version:

https://daneshyari.com/article/4573617

<u>Daneshyari.com</u>