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Spatial heterogeneity in soil properties has an impact on crop response. There is a growing demand for rapid
and non-invasive acquisition of fine-scale information on soil and plant variation for site-specific manage-
ment. Proximal sensing (Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), hyperspectral
spectroscopy (HS)) and remote sensing (RS) can complement direct sampling. However, sensor data fusion
techniques, jointly analysing data from different sources, are still being developed.
The objective of this work was to define a multivariate and multi-sensor approach by combining EMI, GPR, RS
and HS data, without any previous weighing, in order to differentiate an 1.5-ha arable field into homogenous
zones.
The multi-sensor data were split into four groups: 1) bulk electrical conductivity (EC) from EMI data, 2) am-
plitude of GPR signal data, 3) the first principal components relating to five bands (green, yellow, red,
rededge, near-infrared (NIR) PCs) of hyperspectral reflectance data and 4) the vegetation indices (NDVI,
NDRE and NIR/Green) calculated from the remote sensing image. The data of each group were separately
analysed and interpolated at the nodes of a same grid by using cokriging or kriging. To obtain spatially con-
tiguous clusters, a combined approach was used, based on multivariate geostatistics and a non‐parametric
density function algorithm of clustering, applied to the overall multi-sensor data set of the estimates.
The full approach allowed to identify three homogenous areas. In particular cluster 1, in the NW part of the
field, with the lowest values of bulk electrical conductivity and GPR amplitude, and the highest red PC values.
The other two clusters were delineated in the SE part of the field, with the highest values of green, yellow, red
edge and NIR PCs for cluster 2, and the highest values of bulk electrical conductivity and vegetation indices
for cluster 3. The delineation might be related to the intrinsic spatial variability of soil and the health status
of plants and be used to produce a prescription map for site-specific management.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Spatial and temporal variation in soil properties and meteorological
conditions may affect crop growth, yield and yield quality. To increase
farmers' profitability and environmental protection, management
practices then need to be adapted to variable site conditions. Recent
research has focused on delineation of management zones (MZs) in
precision agriculture which are defined as sub-field regions where the
effects on the crop of seasonal differences inweather, soil,management,
etc. are expected to be more or less uniform (Lark, 1998). The final tar-
get is the production of ‘prescription maps’ for spatially variable-rate
applications (VRT) of inputs such as water and/or fertilizer.

To produce accurate and cost-effective assessment of spatial vari-
ation, at the scale required by precision agriculture, there is a growing
demand for rapid, relatively cheap and non-invasive acquisition of
fine-scale information on soil and plant. The high costs of traditional

soil and plant sampling and laboratory analyses suggest a need for
soil sensors that could detect critical soil properties on-the-go in
every field location (Adamchuk, 2011).

Many alternative methods are being considered to complement
conventional survey for estimation of soil and plant properties. Prox-
imal soil sensing, which uses instruments operating very near or in
contact with the soil, has recently received much attention (Molin
and Faulin, 2011).

Geophysical methods provide indirect fine-scale information on
various physical properties both of topsoil and subsoil, whereas re-
mote sensing by satellites as well, as proximal hyperspectral sensors,
give fine-scale information on vegetation or bare topsoil at different
spectral resolutions.

Geophysical surveying with more than one sensor is expected to
become a standard approach, because of the variety of field informa-
tion required to make proper agricultural management decisions. The
current geophysical methods widely employed for agricultural pur-
poses are Electromagnetic Induction (EMI) and Electrical Resistivity
(ER), whereas Ground Penetrating Radar (GPR) has been used for
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agriculture applications more recently (De Benedetto et al., 2011),
and all of them are integrated with Global Positioning System (GPS)
receivers.

However, systems based on the full assembly of more than one
geophysical sensor still need to be developed for agriculture manage-
ment. These multi-sensor systems might even be directly integrated
with farm machinery to allow on-the-go decisions regarding preci-
sion farming operations (Allred, 2011; Castrignanò et al., 2012;
Taylor et al., 2010; Wong et al., 2010).

Some EMI ground conductivity meters have been developed,
which are particularly well suited for agricultural applications. EMI
has several, well known advantages over other methods, which
include speed and ease of use, due to its portability and noninvasive
nature (Reedy and Scanlon, 2003). Ground conductivity meters, typi-
cally employed for obtaining apparent electrical conductivity (ECa)
measurements in agriculture, have inter-coil spacing of around 1 m
and effective investigation depths of 1.5 m or less, when they are po-
sitioned near the ground surface (McNeill, 1980). Vertical and hori-
zontal dipole orientations of the transmitter and receiver coils can
provide different ECa investigation depths within an agricultural
setting.

Apparent electrical conductivity is usually related to various phys-
ical and chemical properties across a wide range of soils (Sudduth
et al., 2005). ECa measurement has been successfully used, for exam-
ple, to measure soil salinity (Lesch et al., 1992), soil water content
and clay or to map groundwater contaminants (Williams and Hoey,
1987). However, it gives an integrated response on the soil profile
and then fails to disclose pedological horizons (Castrignanò et al.,
2012; Wong et al., 2010).

Ground Penetrating Radar (GPR) is a non-invasive geophysical
method that has most often been used as a tool in shallow geophysics
(e.g., detection of buried object, mapping stratigraphic units, etc.);
more recently, it has also been used for agriculture applications. A
method to estimate soil properties from GPR data is to look for the at-
tributes of signal, such as the amplitude of reflected radar waves, that
can give us information on lateral continuities and/or discontinuities
of the subsoil reflectors, on the geometry of the spatial soil structures
and on their characteristics (Sénéchel et al., 2000). Knight et al.
(1997) and De Benedetto et al. (2011) used the amplitude values
for geostatistical analysis of the GPR data to decipher the link be-
tween the radar image and some of the properties (porosity, density,
water content and texture) varying along the soil profile at a very fine
scale.

Remote sensing of crop vegetation has been widely used as an ex-
cellent high-density data source to assess changes in growth environ-
ments from location to location. The potential of remote sensing in
agriculture is very high, because multispectral reflectance of the
crop canopies is related to the important physiological process of
photosynthesis. Reflectance data can be converted into estimates of
canopy area or plant biomass by calculating different spectral vegeta-
tion indices (Rodriguez et al., 2006). Several vegetation indices have
been developed by linear combination or ratios of red, green and
near-infrared spectral bands (Basso et al., 2004). This is the case of
the most widely known Normalized Difference Vegetation Index
(NDVI, Drissi et al., 2009), Green Normalized Difference Vegetation
Index (GNDVI, Gitelson et al., 1996) and soil adjusted vegetation
index (SAVI, Huete, 1988), which can be used to estimate green bio-
mass; whereas the Normalized Difference Red Edge (NDRE), which
uses a reference band in the edge band region (720 nm) in combina-
tion with a vegetation index, is suitable to estimate nitrogen status
(Rodriguez et al., 2006).

Soil reflectance and plant water stress can affect the assessment of
canopy status using remotely sensed data in dry environments (Basso
et al., 2009). Moreover, water deficiency, in these dry environments,
can mask the crop spectral response for nitrogen stress through
changes in reflectance patterns in the Near-Infrared (NIR) and middle

infrared reflectance (Rodriguez et al., 2005). Therefore, it is expected
that Hyperspectral Proximal Sensing (HPS) can be a more exhaustive
source of radiometric information for detecting plant stress (Thenkabail
et al., 2004).

The HPS techniques, based on reflectance measurements acquired
in a high number of contiguous spectral bands, have been successfully
used to derive meaningful biophysical variables related to plant
status, such as the concentration of foliar pigments, nitrogen concen-
tration (Fava et al., 2009), water content and Leaf Area Index (LAI)
(Colombo et al., 2003).

Since a geophysical sensor can give only a partial assessment of
soil/subsoil properties and radiometric sensor output is more related
to superficial land (soil and crop) features, the single use of a sensor
is not ideal to characterize the integrated soil/subsoil - vegetation
system. The combined use of different techniques could then enable
to map distinct spatially-varying features and then to obtain a
more comprehensive knowledge of the soil-plant system, avoiding
the high cost of intensive sampling. At present, there are few papers
(Castrignanò et al., 2012; Guastaferro et al., 2010; Taylor et al.,
2010) that integrate different layers of information, such as proximal
and/or remote sensing data and soil data, for the delineation of ho-
mogenous zones.To the best of our knowledge, there are no studies
specifically focused on collecting multi-sensor data in a Mediterra-
nean area, being submitted to multivariate analysis of geostatistics
and clustering for Precision Agriculture applications.

The objective of this study was to define an approach to combine
data from different sensors through geostatistical methods, with
the target of delineating spatially contiguous homogeneous subfield
areas.

2. Materials and methods

2.1. Study area

This study was conducted in an experimental field (41° 30′ N, 15°
33vE, 102.9 m above level sea) located in an agricultural flat area of
approximately 700 km2 (Capitanata plain) in southern Italy, mostly
cropped with wheat, tomato and sugar beet. The climate is “accentu-
ated thermo-Mediterranean” (FAO-UNESCO, 1963), with minimum
temperatures below 0 °C in winter and maximum temperatures above
40 °C in summer.

The field has a size approximately of 300 m×30 m. The soil is silty
and has a slight depression (at most 2 m) at south-east. The experi-
mental field was cropped in 2010 with winter cabbage and after
harvesting the soil was ploughed up to 35-cm depth and then superfi-
cially tilled to prepare bed-sowing. Tomato plants were transplanted
on May 15th 2010 at a density of 3 plants m−2 with a twin-row
(1.8 m apart) arrangement and harvested on September 7th.

The irrigation water was supplied at a fixed amount (30 mm)
every 5–6 days during the first month and every 2–3 days in the sec-
ond and third month of tomato season. To differentiate the irrigation
treatments, the field was split into two blocks (150 m×30 m) with
Optimal (OP) and Deficit (DE) irrigation: from July 15th to the har-
vest, the irrigation in the DE block (in the north-western part of the
field) was scheduled on the same days but with half amount of
water of the OP treatment (in the south-eastern part of the field).

Plant measurements were carried out in three georeferenced
points per each irrigation treatment at 2-week intervals. In particular,
in each block the following variables were observed:

– Phenology stage of tomato: times of the main phenological stages,
expressed with BBCH scale (Feller et al., 1995);

– Leaf Area Index: leaf sampling, as average of 6 readings, was car-
ried out using LiCOR LAI 2000 instrument, that measures the
blue light (320–490 nm) in 5 concentric cones (with 148° field
of view).
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