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In most spatial analysis of soil variation it is assumed that the random variation not captured by fixed effects
(class means or continuous covariates) is spatially dependent. It is proposed that this should be tested
formally, both to justify the kriging component in subsequent spatial prediction and as evidence of the extent
to which the included fixed effects have succeeded in accounting for soil variation that is spatially dependent
at the scales resolved by the soil sampling. A formal test is possible by computing the log ratio of the
likelihoods for a full model with spatially dependent random effects and a null model which is pure nugget. It
is shown that the sampling distribution of the log likelihood-ratio under the null model is not χ2(p) where p
is the number of additional random effects parameters in the model with spatial dependence. This is because,
while the null model is nested in the full model, parameters of the full model take bounding values in the null
case. The sampling distribution may be computed by Monte Carlo simulations. It is shown that the power to
reject the null model by the log likelihood-ratio test depends on the importance of the nugget effect in the
underlying model, and on the sampling scheme. In many circumstances it may be hard to demonstrate spatial
dependence. The recommended procedure was applied to some data on the organic carbon content of the
topsoil and subsoil of a field in England. This was modelled either with the overall mean the only fixed effects,
or with separate means for different soil map units as fixed effects. There was significant evidence for spatial
dependence in the random effects at both depths when the overall mean was the only fixed effect. Whenmap
unit means were used as fixed effects there was significant, though weaker, spatial dependence in the topsoil,
but the null model could not be rejected for the subsoil. This has implications for any further sampling to map
organic carbon in the subsoil.

© 2012 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.

1. Introduction

In early statistical studies on soil variability and prediction from
soil surveys (Webster and Beckett, 1968) a simple statistical model
was used, implicitly or explicitly. Under this model the value of a soil
property at a set of n locations, S, is a random variate, Y(S), where

Y Sð Þ ¼ Xτ þ ε; ð1Þ

X is an n×p design matrix which associates each location in the set
with one of p soil map units, τ is a p×1 vector of soil map unit means
and ε is an independently and identically distributed (iid) random
variate with mean zero and variance σ2. Note that this is a fixed
effects model, in which the soil map units are included because the
scientist is interested in them; and, having identified them, designs
an appropriate scheme on which to sample them. The resulting data
are then analysed according to this model. The resulting estimated
map unit means, τ̂ , and estimate of the variance of ε, s2 can then

provide a prediction of the value of the soil property at an unsampled
site, given the map unit that is delineated there, and an associated
prediction error variance (e.g. Leenhardt et al., 1994).

This statistical model is entirely valid, provided that the assump-
tion that ε is iid is justified by an appropriately randomised sampling
scheme (de Gruijter et al., 2006). This is the design-based approach.
However, there may be benefits for spatial prediction of soil
properties if the spatial dependence of soil variation within map
units is modelled statistically, and this is essential where the sample
sites have not been selected by an appropriately randomised design
(Lark and Cullis, 2004). The model-based approach, which encom-
passes geostatistical prediction, has been enthusiastically adopted by
soil scientists since the seminal work of Burgess and Webster (1980).

In most early soil geostatistics all the soil variation was treated as
an autocorrelated random process, but it has been recognised that
categorical information, such as conventional soil surveys, and
continuous covariates, such as remote sensor measurements, can be
combined with geostatistical modelling of the remaining spatial
variation. This is the basis of much contemporary work on digital soil
mapping (McBratney et al., 2003). Lark et al. (2006) showed how the
model in Eq. (1), extended to a linear mixed model, generalised
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classical geostatistics accordingly. Now the soil property is modelled
by

Y Sð Þ ¼ Xτ þ Zuþ ε; ð2Þ

where Z is a design matrix which associates each observation with a
random variable in u. (Note that Z is n×n in the usual case where
there is no more than one observation at any location in space). The
random variable u is spatially correlated, so it has a correlation matrix
G with the elements on the main diagonal all equal to 1, and off-
diagonal elements {i, j} taking, in general, non-zero values that
depend, under assumptions of second order stationarity, on a
parametric function C(xi−xj|ψ), where the vector xi is the location
of the ith observation and ψ is a vector of autocorrelation parameters,
such as the spatial parameter a of the well-known exponential
function

Cexpðxi−xj aj Þ ¼ exp −
xi−xj
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It is assumed that the random components have the multivariate
normal joint distribution
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where σ2 is the variance of ε and ξ is the ratio of the variance of u to
that of ε. The assumption of an underlying multivariate normal
random function is implicit in all standard likelihood estimators, such
as the one used in this paper. The data analyst should examine the
data to ensure that this is a plausible assumption, perhaps after
transformation, but it cannot be absolutely verified. However, it has
been observed that likelihood estimators are robust to departures
from normality, and that they are optimal estimators by an entropy
criterion even in cases where strict normality does not hold (Lark,
2000).

It is worth reflecting on the persistence of the iid component in
the linear mixed model, ε in Eqs. (2) and (4). This ‘nugget’ variability
represents all variation that does not appear spatially correlated over
the intervals xi−xj represented in the data set. This may include
measurement error, but the nugget variance can be larger than the
known measurement error variance (e.g. Rawlins et al., 2003),
indicating that there are substantial sources of variation in the soil
operating at larger spatial frequencies (finer scales) than the
sampling scheme can resolve.

It is a common assumption in soil geostatistics that the soil
exhibits spatially dependent variation at scales bounded at the top of
the frequency range (fine scales) by the resolution of the sampling
network and not accounted for by the fixed effects in Eq. (2). This
assumption is generally reasonable, but it is the contention of this
paper that it should be formally examined as a matter of course. We
can think of the fixed effects in Eq. (2) as representing our soil science
knowledge about variable y. This may be the generalised soil
knowledge of a soil survey if the fixed effects include map units,
specific soil knowledge if the fixed effect is the prediction from, for
example, a process model (e.g. Stacey et al., 2006) or tacit soil
knowledge that some covariate should be correlated with the variable
—Rawlins et al. (2009) used elevation and gamma ray emissions as
covariates in a model for soil organic carbon. As we increase the
knowledge content of our statistical model so the random effects will
become relatively less important. We may also expect that, as our soil
knowledge becomes increasingly comprehensive, and as proximal
remote sensors become increasingly well-tailored to measuring soil
properties, and increase in resolution, so the extent to which we can
explain the spatially correlated component of the variation of soil

properties should increase. This is illustrated, for example, by Rawlins
et al. (2009) who showed the variogram function for the random
effects in a model of soil organic carbon decreasing both in sill
variance and in the range as more terms were added to the fixed
effects part of the model. In short, as we increase the content and
sophistication of the soil knowledge of our statistical models so we
should examine the possibility that the unexplained variation will not
show spatial dependence within the frequency range resolved by the
sampling.

A further reason for considering the evidence for spatial
correlation in the random component of a mixed model is the
subsequent use of the model for spatial prediction. If we assume
spatial dependence then the best linear unbiased predictor (BLUP) of
the variable at an unsampled site includes a component that is a
kriging prediction of the random term. Rather than implement this
automatically, we would be best advised to weigh the evidence for
spatial dependence, and select an approach to prediction accordingly.

This paper considers the problem of testing the significance of
spatial dependence in the random effects of a linear mixed model.
The problems are illustrated by simulation, and then the approach is
demonstrated in a case study with some data on soil organic carbon.

2. Theory and simulations

2.1. The linear mixed model and model comparisons in the standard case

The linear mixed model in Eq. (2) is fitted to data, y, by finding an
estimate of the random effects parameters, θ=[σ2, ξ, ψ] that
maximises the residual likelihood:

‘R θ yj Þ ¼ −1
2

log Hj j þ logf jXTHX
� ����þ n−pð Þσ2

þ 1
σ2 y

T I−WC−1WT
� �

yg; ð5Þ

where W=[X, Z] and H=ξZGZT+ I.
The REML estimate is preferred because it reduces the bias in

ordinary maximum likelihood estimation due to error in the fixed
effects estimates. The residual likelihood is the likelihood of a variable
that is a generalised filtering of the original data such that its
maximisation provides consistent estimates of the random effects
parameters that we require, and it is independent of the value of the
unknown fixed effects coefficients (Patterson and Thompson, 1971).
One consequence, however, is that the residual likelihood values for
alternative models for the same data are comparable only if the
models have the same fixed effects structure.

Consider a case where we wish to compare two alternative
random effects models, with the fixed effects in common. The first
model has the exponential covariance function defined in Eq. (3)
above. The second is the stable model (Wackernagel, 2003)

Cstableðxi−xj aj Þ ¼ exp −
xi−xj
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where 0bα≤2. Our question is whether it is appropriate to use the
somewhat more complex stable model. The log-likelihood function
for this model, ‘R θstable yj Þð is always larger than or equal to that for the
simpler model, ‘Rðθexp yj Þ with one fewer parameter so some other
criterion is needed. Formal inference can be based on the log-
likelihood ratio statistic

L ¼ 2 ‘R θstable yj Þ−‘R θexp yj Þ
� o

:
�n�

ð7Þ

Asymptotically under the null model (i.e. when the simpler model
holds) this statistic is distributed as χ2 with degrees of freedom equal
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